
QUALITY INNOVATION PROSPERITY / KVALITA INOVÁCIA PROSPERITA  24/2 – 2020  

 

ISSN 1335-1745 (print)    ISSN 1338-984X (online) 

170

Methodological Assessment of Data Suitability  

for Defect Prediction 

DOI: 10.12776/QIP.V24I2.1443 

Peter Schlegel, Daniel Buschmann, Max Ellerich, Robert H. Schmitt  

Received: 2020-04-03 Accepted: 2020-06-29 Published: 2020-07-31 

ABSTRACT 

Purpose: This paper provides a domain specific concept to assess data suitability 
of various data sources along the production chain for defect prediction. 

Methodology/Approach: A seven-phase methodology is developed in which the 
data suitability for defect prediction in interlinked production steps is assessed. 
For this purpose, the manufacturing process is mapped and potential influencing 
variables on the origin of defects are identified. The available data is evaluated 
and quantified with regard to the criteria relevancy, completeness, appropriate 
amount of data, accessibility and interpretability. The individual assessments are 
then visualized in an overview, gaps in data acquisition are identified and needs 
for action are derived. 

Findings: The research shows a seven-phase methodology to systematically 
assess data suitability for defect prediction and identify data gaps in interlinked 
production steps. 

Research Limitation/implication: This research is limited to the analysis of 
contextual data quality for the use case of defect prediction. Other data analytics 
applications or processes outside of manufacturing are not included. 

Originality/Value of paper: The paper provides a new approach to identify gaps 
in data acquisition by systematically assessing data suitability for defect 
prediction and deducting needs for action. The accuracy of predictive defect 
models is then to be improved by the subsequent optimization of the data basis. 

Category: Research paper 

Keywords: predictive quality; defect prediction; failure prediction; data 
suitability; data quality  
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1 INTRODUCTION  

The implementation of Industry 4.0 shapes the competition of manufacturing 
companies on global markets (Bal and Erkan, 2019). Those who want to stay 
ahead of their competition for the long term are required not only to record all 
available information securely and in real time, but also to process it in order to 
be able to analyze it precisely and continuously (Uhlemann et al., 2017). Having 
the right information available at the right time is an enormous challenge. 
Therefore, it is indispensable to recognize patterns in the data stream, to learn 
from them and to be able to derive the right predictions for the company, the 
processes and the products (Brecher et al., 2017). This applies in particular to the 
prediction of product defects in interlinked production steps (Eger et al., 2018). 
In a data-centric view of the entire production chain, there is great potential for 
the predictive identification of defect causes, the derivation of suitable measures 
and thus the reduction of defect costs. Without continuous data acquisition, it is 
not possible to trace correlations resulting from workpiece handling in different 
process steps (Ghimire et al., 2015). Classical tools such as Statistical Process 
Control mostly consider individual process steps and are therefore unsuitable for 
this application (Škulj et al., 2013). 

The vision of the Internet of Production (IoP) describes a real-time, secure 
availability of information at any time and any place (Brecher et al., 2017; 
Pennekamp et al., 2019). Precise and continuous data analysis, pattern 
recognition for prediction and, based on this, reliable decision-making should 
support production systematically and sustainably.  

The IoP infrastructure shown in Figure 1 consists of four underlying layers 
(Brecher et al., 2017):  

• The Raw Data layer as well as the raw data access via the respective 
application software.  

• A Middleware+ for the administration of the data access on different 
proprietary systems.  

• The Smart Data layer for the generation of knowledge based on the 
Digital Shadow and the Smart Expert layer on which the domain-specific 
usage of the aggregated knowledge takes place.  

The term Digital Shadow is defined as the sufficiently precise representation of 
the processes in production, development and adjoining areas with the purpose of 
creating a real-time-capable evaluation basis for all relevant data (Bauernhansl et 
al., 2016). The relevant representation refers specifically to a smaller scope of 
data than that contained in the raw data, since only data relevant to the 
application case are passed on (Brecher et al., 2017). 

In order to implement models for predicting product defects, a systematic 
selection of the relevant data in the sense of the Digital Shadow must first take 
place. For this systematic selection, manufacturing companies currently lack 
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knowledge regarding their own data quality (DQ) and the suitability of collected 
data for this specific application (Schuh et al., 2019). Previous research work in 
this context has mainly focused on general description models and metrics for the 
evaluation of DQ and not on the context-related development of methods for data 
evaluation (Wang and Strong, 1996; Batini et al., 2009; Zaveri et al., 2015). 

 

Figure 1 – Infrastructure of the Internet of Production  

(Source: Based on Brecher et al. (2017)) 

2 RELATED WORK 

Based on the deficits mentioned, a systematic evaluation of the data suitability 
for the application case of defect prediction is carried out within the framework 
of the methodology presented. The main objective of the developed methodology 
is the creation of transparency regarding data suitability of existing data sources, 
the identification of data gaps and the derivation of need for action. 

2.1 Implementation of Defect Prediction 

In literature, a variety of data-driven methods and strategies for the 
implementation of defect prediction in manufacturing can be found. Eger et al. 
(2018) describe the ForZDM methodology, which expands single process 
boundaries of pre-existing Zero Defect Manufacturing (ZDM) approaches 
towards a production line perspective. This makes it possible to contrast and 
counter defects before, during and after their emergence through the integration 
of multi-level system modelling, big data analysis, Cyber Physical Systems and 
real-time data management (Eger et al., 2018). Wang (2013) presents a general 
framework of ZDM and explains how to apply Data Mining approaches to 
manufacture the products with zero-defect. The developed framework has a 
modular structure and consists among others of the main components fault 
prognosis, fault diagnosis as well as the subsequent correction and compensation 
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(Wang, 2013). Lieber et al. (2013) describe a methodical framework based on 
data mining for predicting the physical quality of intermediate products in 
interlinked manufacturing processes in the context of a rolling mill case study. 
Other approaches to defect prediction also do not include specific modules for 
they systematic assessment of the available database (Arif, Suryana and Hussin, 
2013; Kao et al., 2017; Wuest, Irgens and Thoben, 2013; Schmitt and Deuse, 
2018). 

From literature, it becomes clear that the implementation of methods for defect 
prediction is often addressed in the context of ZDM strategies. Implications for 
the quality of the data basis, which result from the examination of interlinked 
production steps, are considered little or not at all. The presented frameworks 
contain modules for data preparation and feature extraction, but no methodology 
for the context-related evaluation of the data basis. 

2.2 Assessment of Data Quality 

As mentioned in the introduction, a wide range of general methods and 
techniques already exist for the assessment of DQ. The earliest work in the area 
of DQ assessment is published by Wang and Strong (1996). In their work, they 
present a conceptual framework of DQ including 15 dimensions within four 
categories. Batini et al. (2009) provide a systematic and comparative description 
of methodologies that help the selection, customization, and application of DQ 
assessment. Cai and Zhu (2015) analyze the data characteristics of the big data 
environment, present quality challenges faced by big data, and formulate a 
hierarchical DQ framework from the perspective of data users. Zaveri et al. 
(2015) conducted a comprehensive survey on the assessment of linked DQ and 
identified 16 quality dimensions that have been studied in the literature. The 
work unifies and formalizes commonly used terminologies across papers related 
to DQ and provides a comprehensive list of 18 quality dimensions and 69 metrics 
(Zaveri et al., 2015). These dimensions were classified into four categories: (i) 
Accessibility, (ii) Intrinsic, (iii) Contextual, and (iv) Representational. Gürdür, 
El-khoury and Nyberg (2018) base their analysis on the work of Zaveri et al. 
(2015) and present a study that explains and applies a DQ assessment 
methodology as a post-integration phase for linked enterprise data. The authors 
examine a case study from the automotive industry using the linked enterprise 
data approach to integrate data from different development tools (Gürdür, El-
khoury and Nyberg, 2018). Ardagna et al. (2018) propose a methodology to build 
a DQ adapter module, which selects the best configuration for a context-aware 
DQ assessment based on the user main requirements: time minimization, 
confidence maximization, and budget minimization. 

The literature contains a large number of general methods and metrics for 
evaluating DQ. However, there is no methodology for evaluating the database in 
the context of defect prediction. Regardless of the formal quality of the data for 
the application of suitable prediction models, there is uncertainty in many 
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companies as to whether the information required for defect prediction is 
available in digital form at all. From this, the need for research is derived to 
develop a methodology to assess the suitability of the existing database and to 
identify gaps in data acquisition. The research hypothesis derived from this is: 

H:  The accuracy of a model for defect prediction can be improved by a 

systematic assessment of data suitability and the subsequent elimination of 

the identified data gaps. 

3 PREDICTIVE MODELING OF PRODUCT DEFECTS 

Predictive modeling is applied to a range of techniques that find relationships 
between a target variable and the other variables in the data set (Wang, 2013). 
For example, such functions could be classification, value prediction or 
association rules (Raudys, 2001; Backhaus et al., 2016). In the given context, the 
target variable is a specific product defect that is identified by quality control in 
production. The other influencing variables include the parameters of individual 
process steps in the production chain as well as recorded sensor and meta data of 
disturbance and environmental variables. The objective of defect prediction is to 
predict the occurrence of certain defect types based on process parameters, sensor 
and meta data of the manufacturing process. 

Usually, all available data sources are included in the database and then 
informative and non-redundant features are extracted (cf. Figure 2). Feature 
extraction converts raw data into informative features that efficiently represent 
the information relevant for analysis (Rawat and Khemchandani, 2017). The 
more accurately the features represent the data set, the faster and more accurately 
the predictive model will work (Kacprzyk et al., 2006). The features created are 
iteratively tested and optimized during the modeling process, which allows the 
dimension of the input data to be reduced (Liu and Motoda, 2008). For a 
successful feature extraction a suitable pre-processing of the data as well as a 
high contextual and formal DQ of the raw data is necessary. While the evaluation 
of formal DQ (e.g. accuracy, consistency etc.) is excluded from this research, the 
objective is to evaluate the context-related data suitability with a special focus on 
the degree of information content of the data. 
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Figure 2 – Localization of the Research Objective in the Predictive  

Modelling Process 

4 METHODOLOGY 

DQ is usually understood as a multi-dimensional concept. The dimensions 
represent the views, criteria, or measurement attributes for DQ problems that can 
be assessed, interpreted, and possibly improved individually. By assigning scores 
to these dimensions, the overall DQ can be determined as an aggregated value of 
individual dimensions relevant in the given application context. 

The basis for the developed methodology for evaluating the context-related data 
suitability for defect prediction is a slightly modified framework for evaluating 
data quality according to Wang and Strong (1996), which defines 15 DQ 
dimensions in four categories. Of the 15 dimensions depicted in Figure 3, the 
following five are addressed within the methodology of this work: relevancy, 

completeness, appropriate amount of data, accessibility and interpretability. The 
two criteria value-adding and timeliness will not be considered further in the 
context of the developed methodology for the time being. Whether the available 
data or the resulting features actually add value can only be determined after 
modeling. The criterion timeliness and therefore the requirements for the speed 
with which the data is available depends strongly on the real-time requirements 
of the respective predictive model and thus on the application case in the 
production. Therefore, no general evaluation can be made. Since this work is a 
purely context-related evaluation of DQ, the more accurate term data suitability 
instead of data quality is used from here on. 

This methodological approach provides companies with guidance on how to gain 
insight into the information content of the data collected and its suitability for 
defect diagnosis and prediction. The need for increased transparency and 
understanding of the data basis is due to the fact that initiated data analyses in 
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practical industrial utilization often bring only limited gain in knowledge. The 
methodical approach describes a step-by-step process that aids stakeholders in 
discussing, defining and identifying gaps in data collection through systematic 
uncovering and visualization. 

 

Figure 3 – Framework of 15 Quality Dimensions (Source: Based on Wang  

and Strong (1996), Hildebrand et al. (2015) and Zaveri et al. (2015)) 

4.1 Seven-phased Approach 

Based on the five identified criteria, a multi-phased methodology for evaluating 
data suitability is presented in the following. The implementation requires 
stakeholders from different disciplines to contribute both process and information 
technology expertise. The methodology consists of the following seven phases: 

• Phase 1: Process mapping 

• Phase 2: Identification of potential influencing variables (relevancy) 

• Phase 3: Evaluation of completeness 

• Phase 4: Evaluation of the amount of data 

• Phase 5: Evaluation of accessibility 

• Phase 6: Evaluation of interpretability 

• Phase 7: Identification of data gaps and derivation of need for action 

Parallel to the stepwise approach of the methodology, the results are documented 
in an overview of the framework for visualization purposes (Figure 4). 
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Figure 4 – Framework Visualization of the Methodology 

4.1.1 Phase 1: Process Mapping 

Previously existing documentation of the manufacturing process is reviewed and 
a profound understanding of the process is built up within the stakeholder team. 
In workshops, the framework for the development of a defect prediction model is 
set and system boundaries as well as target variables are defined. In the context 
of defect prediction, the target variables are documented defect types with 
defined defect codes. For subsequent modeling, it can be helpful to restrict the 
focus to particularly frequent defect types in order to reduce effort. Subsequently, 
the process is visualized as a functional flow chart in which the essential sub-
processes of production are mapped (Figure 4). 

4.1.2 Phase 2: Identification of Potential Influencing Variables (Relevancy) 

In the next step, the expert team identifies potential influencing variables of the 
individual process steps, which could affect a specific product characteristic and 
thus the defect type. This is done completely detached from recorded data and 
thus represents only the existing process knowledge. A procedural model for the 
identification of quality-relevant influencing variables has already been 
elaborated in previous publications (Schmitt et al., 2016; Schmitt et al., 2020). 
The model in question consists of four steps: the identification of quality 
characteristics (here: defect types), quality-relevant processes, quality-relevant 
information and quality-relevant sources of information. The identified potential 
influencing variables are systematically mapped in a cause-effect diagram and 
assigned to the specific defect type by linking them to the defect line (Figure 4). 
Whether the identified influencing variables are reflected in recorded process 
data is then checked in the further course of the methodology. 
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4.1.3 Phase 3: Evaluation of the Completeness 

The existing database is then evaluated in regard to its degree of coverage of the 
potential influencing variables identified in phase 2. This evaluation of the 
criterion completeness is carried out separately for each individual process step 
from a data-centric point of view. The measure of completeness for individual 
influence variables Ii is defined as follows: 

 ���������	
�� ∶= �	1				��	�������������	����	��	��������0				��ℎ��!��� . (1) 

The evaluation of completeness of the data basis for entire process steps Sj 
results from the arithmetic mean over all potential influencing variables of the 
process step. 

 ���������"#$% ∶=
∑ ���������	
��'
�()

�  (2) 

The determined value of 1 ≥ ���������"#$%	≥ 0 is subsequently visualized as 
Harvey Ball and included in the methodology’s framework (Figure 4) in the 
process overview. In addition to evaluating the completeness of recorded data in 
relation to individual process steps, it is also checked whether defect data 
recording has been implemented for individual products with defined defect 
codes (Figure 4). 

4.1.4 Phase 4: Evaluation of the Amount of Data 

In phase 4, the amount of available data is evaluated for every individual process 
step. For this purpose, the storage duration of the data recording is considered, 
i.e. to what extent historical data is available for the training of a predictive 
model. Five evaluation levels are introduced for this purpose: 

• No storage of historical data 

• Storage of historical data for one week 

• Storage of historical data for one month 

• Storage of historical data for twelve months 

• Storage of historical data for > twelve months 

In addition, the evaluation of this criterion is affected by the heterogeneity of the 
parameter variations in the data sets. On top of the parameter variation itself, 
special focus is placed on the occurrence of the considered defect types in the 
recording period. This is due to the fact that for a successful training of a 
predictive model a sufficiently large number of defects must have occurred in the 
recording period. This ensures that a balanced training data set can be created 
without the application of over or under sampling techniques. The overall 
evaluation of the criterion is then visualized in the form of Harvey Balls and 
placed in the methodology’s framework (Figure 4). 
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4.1.5 Phase 5: Evaluation of Accessibility 

In phase 5, the IT systems and their underlying databases in which the identified 
data is stored are reviewed with regard to data accessibility. The range goes from 
centrally stored SAP databases to decentrally distributed data in local systems on 
the shop floor. The focus of the evaluation criterion lies primarily on the 
possibilities for data export from the individual storage systems. Five evaluation 
levels are introduced for this purpose: 

• Data export is not possible 

• Manual screening and transfer of data 

• Manual data export via storage device 

• Semi-automated export via network 

• Automated export via network 

Afterwards, the evaluation of data accessibility for single process steps is again 
visualized in the form of Harvey Balls and placed in the methodology’s 
framework (Figure 4). 

4.1.6 Phase 6: Evaluation of Interpretability 

The evaluation of the interpretability of the available data takes place in phase 6. 
For this purpose, the extent to which the collected data can be clearly assigned to 
a specific product and thus to occurring defects is evaluated. The data integration 
and therefore the linkability of data from different production steps to a certain 
product is made possible by the available meta information. If such a linkability 
via meta data is not given, the information contained in the data can be neither 
interpreted regarding its influence on the defect cause nor be modeled later. A 
total of four levels are distinguished in the evaluation: 

• The recorded data cannot be assigned to individual products and thus to 
defects that occur. 

• The assignment of recorded data to predefined product types can be 
implemented. 

• The assignment to individual products can be implemented indirectly, e.g. 
via batch assignment or the time stamp. 

• The recorded data can be directly assigned to individual products, e.g. via 
a product ID. 

The results of the evaluation carried out are also visualized and entered in the 
methodology’s framework (Figure 4). 
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4.1.7 Phase 7: Identification of Data Gaps and Derivation of Need for Action 

After the production process has been mapped, potential influencing factors have 
been derived and the suitability of existing data has been evaluated on the basis 
of defined criteria, the main fields of action are systematically identified. The 
degree to which Harvey Balls are filled in serves as an indicator for the greatest 
gaps in data suitability. The elimination by means of suitable measures is then 
prioritized. First, measures with low personnel and financial expenses are to be 
addressed in order to achieve the so-called quick wins. However, in principle the 
strategy with which the gaps in data acquisition are to be closed depends strongly 
on the respective target variable. This can, for example, be characterized by a 
particularly frequent type of defect after a certain process step. 

5 OUTLOOK 

In future work the presented methodology will be elaborated in more detail as 
well as extended by further features. For phase 2, the identification of potential 
influencing variables, a flexible and process-independent meta-model for 
manufacturing data is currently being created to simplify the identification of 
influencing variables and their mutual relationships within the manufacturing 
process. Furthermore, the understandability of the data in the form of formal DQ 
criteria such as data format and data structure is going to be included, which is 
not particularly addressed in the current draft. The main focus of future work lies 
on the validation of the methodology on the basis of a real use-case from the field 
of high volume sink production. Before and after the implementation of the 
methodology, available data will be pre-processed, features will be extracted and 
predictive models for defect prediction will be created. The accuracy of these 
models for defect prediction will be compared before and after applying the 
methodology in order to verify the formulated research hypothesis: The accuracy 

of a model for defect prediction can be improved by a systematic assessment of 

data suitability and the subsequent elimination of the identified data gaps. 

6 CONCLUSION 

The systematic approach, in which the individual phases are completed step by 
step, makes it possible to evaluate data suitability for defect prediction with 
regard to various defined criteria. The continuous documentation and 
visualization of the evaluations allow a quick overview of the data gaps and thus 
the need for action along the production process. By applying the methodology 
before the actual modelling, the user receives information about the data 
suitability at a level of detail, which he does not receive by Machine Learning 
models with a black box character. The methodology therefore supports a 
systematic selection of the relevant data in the sense of the Digital Shadow. It is 
postulated that the accuracy of predictive models can be increased by using this 
systematic evaluation of data suitability and the elimination of identified gaps. 
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Since the initial effort is rather high, especially for many sub-process steps, it can 
be useful to limit the focus to certain sub-processes with a high number of 
occurring defects. In order to train a capable prediction model, formal DQ criteria 
are relevant as well as the applied content criteria. 
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