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ABSTRACT  

Purpose: This article aims to compare the impact on process optimisation with 

multiple responses of two different mathematical modelling methods: Ordinary 

Least Squares Method (OLS) and Symbolic Regression Method (SR). 

Methodology/Approach: Data from the literature were selected from the design 

of experiments for a process with multiple responses. Using these data, models 

were obtained that represented each response as a function of independent 

variables using the OLS and SR techniques. Then, the Desirability method was 

applied together with the Generalized Reduced Gradient (GRG) in order to obtain 

the process adjustment that would lead to the optimisation of the responses. 

Findings: The findings illustrate that the SR modelling technique yields models 

with superior predictive capabilities when contrasted with the OLS technique. 

Throughout the optimisation process, it becomes evident that the adjustments in 

the process diverge, even though the desirability function's value exhibits 

negligible variation. 

Research Limitation/implication: This research considered only an SR 

algorithm and a process with two dependent variables and two independent 

variables. 

Originality/Value of paper: No works were found in the literature that reported 

the use of the Age-Layered Population Structure (ALPS) algorithm in modelling 

processes that contain multiple responses. Furthermore, no comparison of this 

method with the OLS method was available. 

Category: Research paper 

Keywords: mathematical modelling; symbolic regression; multiple response 

optimisation 
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1 INTRODUCTION  

The evolution of society paralleled the rapid strides of the Industrial Revolution. 

Within this transformative context, two key concepts emerged, shedding light on 

the shifts within the sector: technology, which encompasses theories pertaining to 

the means of production, and technique, representing the practical application of 

these technologies (Soori et al., 2023). It has become evident that there is a growing 

demand for premium products as consumers increasingly seek out high-quality 

offerings (Niu et al., 2020). To ensure the production of these goods remains 

economically feasible for companies, an ongoing commitment to enhancing 

technology and the application of techniques in these processes is imperative. 

Mathematical modelling plays a crucial role in the field of process optimisation. 

In fact, the effectiveness of process optimisation is intrinsically linked to the 

quality of the models obtained. In other words, a process of optimisation can only 

achieve satisfactory results if the mathematical model representing it is of high 

quality (Ota, 2015). 

Mathematical modelling finds utility in a wide spectrum, encompassing biology, 

medicine, chemistry, and the social sciences. The significance of mathematical 

models becomes evident in diverse applications, such as water resource 

management (Keeler et al., 2012), the planning of glass packaging production 

(Toledo et al., 2016), the production of organic compounds through biological 

processes (Ascencio et al., 2021), and forecasting the evolution of the Covid-19 

pandemic (Gleeson et al., 2021). This resource serves as a means to represent 

reality, enabling the design, analysis, and, most importantly, manipulation of 

scenarios. This resource not only offers a means to portray reality but also 

facilitates the design, analysis, and, most crucially, manipulation of scenarios. 

It is challenging to provide an optimisation model that accurately represents a 

process, especially when considering multiple responses. This is because processes 

rarely have a single quality characteristic, and these characteristics often have 

conflicting process adjustments (Kuriger and Grant, 2011). 

Various techniques can be proposed for the development of mathematical models, 

and Symbolic Regression stands out as a procedure with significant potential for 

utilisation (Gomes et al., 2019). 

Symbolic regression involves the manipulation of mathematical expressions to 

determine which functions accurately represent a given dataset. It incorporates 

evolutionary computation and is considered the most suitable approach for model 

discovery (Liu et al., 2019). Genetic Programming, introduced by Koza (1992) in 

the early 1990s, plays a pivotal role in Symbolic Regression. It belongs to the 

family of Genetic Algorithms and is instrumental in seeking the optimal solution 

for a problem by optimising the fitness function value through the manipulation of 

an initial population of solutions via genetic operators. 

As a form of artificial intelligence, Genetic Programming possesses the capability 

to identify the best mathematical model based on predefined conditions. This 
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technology is increasingly relevant for industries striving to embrace Industry 4.0 

(Frank et al., 2019). 

It is known that a goal for a response can vary as being STB, smaller the better, 

where minimum is best, or as LTB, larger the better, where maximising is best, 

and there is also a possibility known as NTB, nominal the best, where the goal is 

to get as close as possible to a predefined goal value. In a manufacturing 

environment, most products have more than one quality characteristic to be 

optimised, and these are often correlated, so a process design that favours reaching 

the objective of one characteristic can be completely unfavourable to another, 

triggering the well-known Multiple Response Optimisation Problems (Han et al., 

2019). 

The objective of this study is to analyse the performance of Symbolic Regression 

as an alternative for the mathematical modelling of problems with multiple 

responses, optimising the models obtained by the Desirability Method using the 

Generalized Reduced Gradient (GRG) to search for the optimal point. 

2 THEORETICAL BACKGROUND 

2.1 Symbolic Regression (SR) 

Symbolic Regression (SR) involves the manipulation of mathematical expressions 

to derive mathematical models that effectively capture the characteristics of a 

given dataset (Searson, 2015). 

SR is an Artificial Intelligence (AI) technique situated within the broader domain 

of Evolutionary Computing, serving as an extension of the Genetic Algorithm 

(GA) initially conceptualised by Koza (1992). The foundation of SR draws 

inspiration from the principles of genetics and evolution at the population level. It 

employs evolutionary mechanisms, including crossover and mutation, within an 

initial population to optimise the alignment between the population of candidate 

programs and a specified function objective, whether oriented towards 

maximisation or minimisation (Ojha et al., 2017). 

The conventional approach to regression typically assumes that a mathematical 

model describing a phenomenon adheres to a standardised format, often in the 

form of a first or second-degree polynomial. In this method, the central objective 

is to ascertain the optimal coefficients for this model, enabling it to closely align 

with the observed data. To apply this approach, a systematic exploration of various 

functions is necessary until a fitting solution is identified. As a result, the outcome 

of such an analysis heavily depends on the expertise of those responsible for 

selecting the functions to be examined. Even among experienced practitioners, it 

is common practice to restrict testing to linear and quadratic functions, overlooking 

the potential for more complex models to deliver superior results (Kommenda et 

al., 2019). 
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The SR distinguishes itself from genetic algorithms in its approach to modelling, 

where it derives the syntax of the model. In contrast, other algorithms focus on 

optimising only the parameters (Sandoval et al., 2022). This unique characteristic 

is a result of the representation employed in SR. It utilises a tree-based 

representation composed of terminals and functions, which can vary according to 

the problem domain. These functions can take various forms, such as standard 

arithmetic operations, standard programming operations, standard mathematical 

functions, logical functions, and more (Koza, 1992). Figure 1 illustrates the tree 

representation of Equation 1, featuring a three-level chromosome that can be 

recognised as a computer program. It includes a root node, four internal nodes, and 

four external nodes represented in dark grey. 

 
1

1 3

2

2.5
x

y x
sen x

    (1) 

 

 

Figure 1 – Basic PG algorithm using a tree representation for individuals 

 

Consequently, the operation of SR closely mirrors the steps employed in GA, as 

illustrated in Figure 2. Ultimately, this approach resolves the problem by 

constructing a mathematical model aligned with the initially specified information. 
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Figure 2 – Steps of a Genetic Programming Algorithm 

2.2 Age-Layered Population Structure 

The Age-Layered Population Structure (ALPS) based genetic programming 

introduces an innovative metaheuristic strategy designed to counter premature 

convergence. It accomplishes this by running multiple instances of a search 

algorithm in parallel. Initially, ALPS was integrated with a generational 

Evolutionary Algorithm (EA), resulting in ALPS-EA, which exhibited 

significantly superior performance when compared to a standard EA (Hornby, 

2009). 

ALPS employs a hierarchical population structure that aims to boost genetic 

diversity and optimise the exploration of novel mathematical models. This strategy 

relies on the concept of genotypic age, a measure that reflects how long an 

individual's genetic makeup has been evolving within the population. The 

fundamental principle of ALPS involves segregating the population into multiple 

age layers, preventing younger and less proficient individuals from being swiftly 

outcompeted by older, more adept counterparts. Following this principle, 

competition primarily occurs among individuals with similar genotypic ages, all 

while maintaining an overarching selection pressure to enhance overall fitness 

(Hornby, 2006). 
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In a study conducted by Patnaik et al. (2018), the performance of ALPS was 

compared with nonlinear multiple regression for modelling vehicle traffic in India. 

The results obtained indicated that the models produced by ALPS exhibited 

superior predictive power, particularly in heterogeneous traffic conditions. 

2.3 Evaluating the Performance of Mathematical Models 

Pearson's coefficient (R2) is often used to determine the adequacy of a model 

Montgomery (2017). Mohammadzadeh et al. (2016) used the R2 coefficient of 

determination to evaluate the performance of equations that predict the 

compression index of soils modelled via Multi-gene Genetic Programming. 

The R2 is a measure of the amount of variability in the data explained by the model. 

This ratio can take on values from -1 to 1, where 1 represents an entirely positive 

correlation, and -1 is an entirely negative correlation, with the best model being 

the one with the highest absolute value of R2 (Zhu et al., 2019). However, 

employing this statistic can be considered inefficient for validating a model 

because adding estimated parameters will increase R2 and consequently increase 

the variability embedded in the model (Fukuda et al., 2018). 

Yang (2005) proposes using the adjusted R2 coefficient ( 2

adjR ) as a more efficient 

way to measure the performance of mathematical models since this coefficient 

decreases in value when non-significant parameters are added to the model. The 

quality of a model can also be assessed by the AIC statistic, which considers that 

there is a model that best represents the relationship between dependent and 

independent variables (Tesfamichael and Ndlovu, 2018). The p-value analysis 

shows how statistically significant the estimated parameters are. However, to avoid 

having a Type 1 error, i.e., wrongly rejecting the null hypothesis in the p-value 

analysis, Akaike's Information Criterion becomes an alternative for measuring the 

quality of models when there is more than one model in the study as a candidate 

(Halsey 2019). 

2.4  Akaike's Information Criterion (AIC) 

The Akaike Information Criterion (AIC) is a statistical tool widely used in the 

analysis of statistical models. It was developed by the Japanese statistician 

Hirotugu Akaike in the 1970s as a measure to select the best statistical model 

among a set of candidate models (Akpa and Unuabonah, 2011). 

The AIC is based on the principle of parsimony, which seeks to find a balance 

between the quality of the model's fit to the data and the number of model 

parameters. 

In other words, the AIC penalises more complex models, which have a greater 

number of parameters, in favour of simpler models, which explain the data with 

the fewest possible parameters (Ingdal et al., 2019). 



QUALITY INNOVATION PROSPERITY / KVALITA INOVÁCIA PROSPERITA  27/3 – 2023  

 

ISSN 1335-1745 (print)    ISSN 1338-984X (online) 

24 

The AIC calculation takes into account the model's likelihood function and the 

number of estimated parameters. The smaller the AIC value, the better the fit of 

the model to the data. Therefore, when comparing different models, the model with 

the lowest AIC value is generally considered to be the best in terms of fit and 

generalizability (Ward, 2008). The AIC is given by Equation 2: 

ln 2
SSE

AIC N K
N

 
    

 
 

(2) 

where N is the number of points used in obtaining the model (sample size). When 

more parameters are added to a model, the first term becomes smaller, while the 

second term becomes larger. When N is small compared to K for the largest model 

size in the candidate set (as a general rule, N/K < 40), it is recommended to use the 

Akaike Information Criterion Corrected for small samples (AICC) (Burnham et al., 

2010). The AICC is given by Equation 3. 

 2 1

1
C

K K
AIC AIC

N K

  
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 
 

(3) 

The use of AICC instead of AIC is preferred since it is more accurate for small 

samples and shows very similar results for large samples (Al-Rubaie et al., 2007). 

Determining the AICC differences (∆) allows a quick comparison and ranking of 

candidate models. For the i-th model, the ∆i is given by Equation 4: 

 min
ii C CAIC AIC    (4) 

where min AIC is the smallest AICC value among all models evaluated, the ∆ of 

the best model generated is equal to zero, while the rest of the models have positive 

values, and the higher the value of ∆ for the model, the worse the quality of its 

adjustment. 

As a general rule, models with ∆ ≤ 2 have substantial predictability support, those 

with 2 ≤ ∆ ≤ 7 have considerably less support, and models with ∆ ≥ 7 have no 

support (Burnham et al., 2010). 

Gopalan et al. (2018) propose another way to interpret the AICC: normalising the 

relative likelihood values and calling it AW. The weights of all the models added 

together will be equal to one; thus, the model with the highest AW is considered 

the most effective because the weight of evidence that a model i is greater, and it 

is the best approximation of reality. The calculation of AW can be performed 

through Equation 5: 
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3 AGGLUTINATION METHODS FOR PROCESSES WITH 

MULTIPLE RESPONSE 

3.1 Optimisation 

Optimisation does not necessarily imply the determination of optimal operating 

conditions since it is practically impossible to establish the optimum point due to 

the unlimited number of variables that impact a process. Instead, what can be 

determined are conditions for improvement by selecting maximum points 

determined within a predetermined search space (Dehuri and Cho, 2009). 

3.2 The Desirability Method 

The Desirability optimisation method stands out as a robust and adaptable 

statistical approach widely employed across diverse fields, including science, 

engineering, medicine, and industry. Its primary application lies in the 

simultaneous optimisation of multiple responses, making it especially valuable in 

navigating complex problems that entail balancing often conflicting goals (Bezerra 

et al., 2019). 

At its core, the Desirability method revolves around the integration of various 

responses or criteria of interest into a unified desirability function. This function is 

designed to accommodate goals of maximisation, minimisation, or achieving 

target ranges for each response. By doing so, it allows for the consolidation of 

diverse objectives into a singular, comprehensive measure, offering insight into 

the overall "desirability" of a given configuration of parameters or experimental 

conditions (Derringer and Suich, 1980). 

The process of implementing the Desirability optimisation method can be divided 

into a few key steps: 

1. Definition of criteria: Identify and define the responses you want to 

optimise. These could be process variables, product characteristics, or any 

other metrics relevant to the problem at hand. 

2. Normalisation: To perform the aggregation of responses, it is necessary to 

normalise them. Normalisation is performed so that all responses can be 

compared on the same scale, preventing any of them from dominating the 

optimisation process just by their numerical scale. 

3. Desirability function: Every response is linked to a desirability function, 

outlining the specific contribution of the variable of interest to the overall 

outcome. The form of this function, whether linear, quadratic, cubic, or 

another variant, varies based on the unique characteristics and significance 

of each response in addressing the problem at hand. 

4. Global desirability calculation: Once all desirability functions are defined, 

it is possible to calculate a global desirability index for each combination of 
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parameters or experimental conditions. This index represents how close this 

configuration is to achieving all desired goals. 

5. Optimisation: With the desirability values calculated, the next step is to 

search for combinations of parameters or experimental conditions that 

maximise this global index. There are several optimisation techniques 

available, such as numerical methods or heuristic search algorithms (Gomes 

et al., 2017).   

The Desirability optimisation method has several advantages, one of the most 

notable being its ability to deal with multi-objective optimisation problems, where 

several conflicting goals must be considered. Furthermore, it is a valuable tool for 

making informed decisions in research and development projects, as well as for 

quality control and process improvement in industrial environments (Gomes et al., 

2019). 

4 METHOD 

According to Bertrand and Fransoo (2002), this work can be classified according 

to the flow chart shown in Figure 3. 

 

Figure 3 – Modified Desirability Function 

The research steps were carried out following the listed steps: 

1. The experimental data present in the work of Shin and Cho (2005) were 

selected; 

2. From the experimental data obtained, models describing the previously 

selected responses were generated using the Ordinary Least Squares (OLS) 

technique with the aid of Minitab® v. 20 software. The number of 

parameters adopted for each model was stipulated as a function of the value 
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of 2

adjR ; that is, the parameters of less significance were removed as their 

value increased until this indicator was maximised; 

3. From the experimental data obtained, models describing the previously 

selected responses were generated using the Symbolic Regression 

technique with the aid of Heuristiclab® v. 3.3.15 software and the ALPS 

algorithm. The computational effort was limited to 30 minutes of software 

execution for each model; 

4. An analysis of the models obtained in steps 2 and 3 was performed, 

comparing the AIC values and parametric sensitivity analysis. From these 

data, we can rank the models according to their higher predictability; 

5. A process of optimisation of the independent variables present in the 

models obtained by OLS and SR was carried out using the Desirability 

function as the agglutination method and the Generalized Reduced Gradient 

(GRG) as the mathematical search method; 

6. From the results obtained in the previous steps, the present conclusions 

were made at the end of this article. 

The GRG implementation was developed using the Microsoft Excel® software. 

5 RESULTS AND DISCUSSION 

The selected data refer to a study on the effect of two dependent variables on 

silicon wafer coating thickness (Y), measured in micrometres. The two variables 

studied were the moulding stage temperature given by X1, measured in Fahrenheit 

and the injection flow rate, X2, measured in pounds per second. The experimental 

matrix for the case studied by Shin and Cho (2005) is presented in Table 1: 

Table 1 – Experimental Matrix 

Experiment Variable Thickness Variance 

 X1 X2 Y S2 

1 -1 -1 73.200 10.020 

2 1 -1 76.975 22.683 

3 -1 1 76.200 8.447 

4 1 1 72.050 11.503 

5 -1.414 0 71.950 7.017 

6 1.414 0 76.900 6.420 

7 0 -1.414 74.675 17.683 

8 0 1.414 75.400 14.180 

9 0 0 72.575 1.129 

10 0 0 72.500 2.700 
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Experiment Variable Thickness Variance 

 X1 X2 Y S2 

11 0 0 71.850 3.423 

12 0 0 70.875 2.083 

13 0 0 71.525 3.489 

 

The models for the mean and variance of the experiment obtained by OLS are 

illustrated in Equations 6 and 7. 

2 2

1 2 1 271.868 1.247 1.555 1.983Y X X X X         (6) 

2 2 2

1 2 1 21.572 0.238 0.282 0.576 1.276S X X X X          (7) 

The models proposed using SR are shown in Equations 8 and 9: 

  
2

6

2 1 171.9967 2.8806 0.74957 0.493248 0.65065Y X X X         
(8) 

    
2

2 22 2

2 2 1 1 21.5784 0.1541 0.2859 0.3779 0.65929 1.8195S X X X X X
 

            
 

 (9) 

To test the homoscedasticity of the models presented in Equations 14 and 15, a 

normality test of the residuals of these models was performed. The results are 

shown in Figure 4. 

 

Figure 4 – Test of normality of residuals for the models represented in equations 

8 and 9 

As depicted in Figure 4, the p-value of the test exceeded 0.05 in both instances, 

indicating a normal distribution of residuals at a 95% confidence level. This 

finding serves as evidence of the homoscedasticity of the models, signifying their 

unbiased behaviour. 

The results of the tests to evaluate the prediction quality of the models are 

illustrated in Table 2. 
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Table 2 – Quality indicators of the mathematical models 

Method Model AIC AICC Δi R2 𝑹𝒂𝒅𝒋
𝟐  P-

value 

AWi 

OLS Y 6.601 15.172 20.59 0.8205 0.7308 0.003 4.5E-5 

SR Y - 9.886 - 4.886 0 0.9411 0.9215 3E-6 0.9999 

OLS S2 - 17.468 - 3.468 13.88 0.9117 0.8486 7E-4 9.7E-4 

SR S2 - 25.917 - 17.346 0 0.9466 0.9198 1E-5 0.9999 

 

As shown in Table 2, the analysis of the R2 coefficient shows that the models 

obtained by SR perform better than the models obtained by OLS. This same 

behaviour can be found in the analysis of the 2

adjR , demonstrating that the SR 

models have a better correlation without the addition of parameters. 

Analysing the AICC values, it is observed that SR is the method that best minimises 

the Kullback-Leibler (K-L) distance. The values of ∆ show that the models 

obtained via OLS have no support for the data set, and the values obtained for the 

AW indicator show that the models obtained by SR have greater weight, thus 

making a better representation of reality. From these analyses, it can be stated that 

genetic programming, in this case, obtains models of higher predictive quality than 

the models obtained by OLS. 

5.1 Optimisation 

From the mathematical models generated, optimisation processes were performed 

for problems with multiple answers. The method consisted of using the GRG as a 

mathematical search method and the Desirability function as an agglutinating 

function. The targets for the optimisation of each response are presented in 

Equations 10 and 11: 

72,8yT   (10) 

2 0
S

T   (11) 

The constraints for this problem are presented in Inequalities 12 to 15 : 

68,8 76,8y   (12) 

20 10S   (13) 

11,414 1,414x    (14) 

20 10S   (15) 

 

The individual desirability functions are described in Equations 16 and 17: 
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1

68.8
68.8 72.8

72.8 68.8

76.8
72.8 76.8

72.8 76.8

0 68.8   or  76.8

Y
Y

Y
d Y

Y Y

  
    

  
   

 
  



 (16) 

2
2

2

2 2

10
0 72.8

0 10

0 0   or  10

S
S

d

S S

 
  

  


 

 (17) 

The total desirability function can be seen in Equation 18: 

 
1

2
1 2D d d   (18) 

The results obtained in the optimisation process are summarised in Table 3: 

Table 3 – Optimised Parameters 

Variables 
Modelling Methods 

OLS SR 

X₁ -0.60 0.01 

X₂ 0.29 0.71 

Y 72.8 72.8 

S² 1.66 1.58 

D 0.166 0.158 

 

As can be seen in Table 3, the Global Desirability values are very close; therefore, 

there is no difference from one method to another. However, the models obtained 

by OLS present a different process fit from that presented by the model obtained 

by SR; this fact occurs due to the change in the behaviour of the Global Desirability 

function, as illustrated in Figures 5 and 6. 
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Figure 5 – Behavior of the Desirability function using the models obtained by 

Ordinary Least Squares 

 

Figure 6 – Behavior of the Desirability function using models obtained by 

Symbolic Regression 

Analysing Figures 5 and 6, it can be noted that there is a change in the global 

optimum region (identified by the red colour in the Figures). Moreover, if we take 

into account that the statistical tests proved that the models obtained by the SR 

technique have more accurate predictability, it is believed that the process 

adjustments proposed by these models are more reliable and, therefore, better. 
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6 CONCLUSION 

Symbolic regression stands out as a highly promising and versatile tool, adept at 

extracting polynomial models that astutely encapsulate the intricate dynamics 

inherent in an experimental matrix grounded in the Design of Experiments (DOE) 

principles. Its ability to discern complex patterns in data makes it an invaluable 

asset in the realm of modelling. It is important to note that the use of symbolic 

regression entails a considerable increase in the time and computational effort 

required to obtain mathematical models. However, it is worth emphasising that if 

the goal is optimising an industrial process with few variations over an extended 

period, this impact can be considered negligible. In this context, the benefits of 

symbolic regression in terms of accuracy and system understanding may well 

outweigh the temporal demands, making it a valuable choice in scenarios where 

process stability is paramount. 
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