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ABSTRACT 

Purpose: In this paper, we propose a method to classify and detect normal, known 

anomalies, and unknown anomalies by combining the expectation–maximisation 

(EM-λ) algorithm and the Mahalanobis–Taguchi (MT) method.  

Methodology/Approach: The proposed method learns normal data that are 

expected to be homogeneous and known abnormal data and performs classification 

and detection by parameter estimation using the EM-λ algorithm. Conventional 

methods perform analysis based on parameter estimation using the EM algorithm. 

However, the EM algorithm can degrade classification accuracy if it does not 

assume that the data fits the model's generative process.  

Findings: We verify the performance of the proposed method using artificially 

generated data and real-world bean data for classification as data that do not satisfy 

this assumption. The validation results show up to 6% improvement over the 

conventional method in classification accuracy and unknown anomaly 

discrimination accuracy. 

Research Limitation/implication: We try various patterns for the parameter of 

the proposed method in the verification. However, this way is computationally 

expensive. 

Originality/Value of paper: Conventional methods perform analysis based on 

parameter estimation using the EM algorithm. Our proposal method seeks to 

improve accuracy by using the EM-λ algorithm for parameter estimation, which is 

expected to improve classification accuracy when the data do not conform to the 

generative assumptions of the EM algorithm's model. 

Category:  Conceptual paper 

Keywords: MT method; Anomaly detection; Semisupervised Learning, 

Classification, EM-λ algorithms 



QUALITY INNOVATION PROSPERITY  28/1 – 2024  

 

ISSN 1338-984X (online) 

2 

1 INTRODUCTION  

The Mahalanobis–Taguchi (MT) method is a representative method in the MT 

system (Taguchi and Jugulum, 2002), which is a system of pattern recognition and 

prediction techniques proposed by Taguchi. Examples of MT applications include 

cooling fan anomaly detection (Jin and Chow, 2013) and financial crisis prediction 

(Lee and Teng, 2009).  

In the MT method, a homogeneous population is defined as a unit space with 

respect to the objective, and the analysis is performed based on the Mahalanobis 

distance from the center of the unit space to the target data. Homogeneity can be 

defined as a normal or steady state (Tatebayashi et al., 2008). For example, when 

using the MT method for anomaly detection, data that do not belong to a unit space 

can be identified as abnormal by forming a unit space with normal data. 

In the MT method, the normal state is often used as the unit space. However, 

according to Tatebayashi et al. (2008), the abnormal state can also be defined as 

the unit space if information on all abnormalities is available. For example, ball 

bearing anomalies can be classified into several types of anomalies, such as flaking 

(fatigue failure), seizure, and cracking (Soylemezoglu et al., 2010). Thus, when 

homogeneity can be expected for each anomaly (known anomalies), a unit space 

can be defined for each anomaly. Moreover, based on the Mahalanobis distance 

from each unit space, the normality of the target data and the type of anomaly can 

be simultaneously determined. If the Mahalanobis distance is far from any of the 

unit spaces, the anomaly may be an “unknown anomaly” without a known pattern. 

Therefore, the purpose of this study is to propose a new MT analysis process that 

can classify normal, known abnormal, and unknown abnormal data when normal 

data and a specific pattern of abnormal data are obtained. 

The remainder of this paper is organised as follows: Section 2 describes the related 

work. Section 3 presents the algorithm of the proposed method, and Section 4 

discusses the simulation using artificial data. Section 5 discusses the simulation 

using real-world data. Finally, Section 6 summarises the conclusions and future 

work. 

2 RELATED WORK 

2.1 EX-MT Method  

Honma et al. (2022) proposed an extended MT (EX-MT) method that can classify 

and detect “normal”, “known abnormalities”, and “unknown abnormalities”, when 

homogeneity can be expected for multiple normal and abnormal patterns.  

The EX-MT method defines an “extended unit space” that handles multiple unit 

spaces simultaneously. Assuming 𝐾  unit spaces, the density around 𝑥  in the 

extended unit space follows the probability density function of the Gaussian 
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mixture model (GMM), and we detect and classify anomalies based on the model. 

The extended unit space model is as follows: 

𝑝(𝑥) = ∑ 𝜋𝑘

𝐾

𝑘=1

𝑁(𝑥|𝜇𝑘, 𝛴𝑘), (2.1) 

where 𝑁(𝑥|𝜇𝑘, 𝛴𝑘) is a multivariate normal distribution that generates individuals 

with class label 𝑘, 𝜇𝑘 is the population mean vector of class 𝑘, 𝛴𝑘 is the population 

covariance matrix of class 𝑘, and 𝜋𝑘 is the population mixture ratio of class 𝑘. 

In the abnormality detection phase, the abnormality 𝑎(𝑥)  of individual 𝑥  is 

calculated to detect “unknown abnormalities.” In the classification phase, the 

clustering function is used to classify 𝑥, which is determined to be an individual 

belonging to the extended unit space, into 𝐾  classes of “normal” and “known 

abnormalities.” The formulas for the abnormality 𝑎(𝑥) and clustering function are 

given in Equations (3.2) and (3.3), respectively, in Section 3.2. 

Next, we explain the parameter estimation method of the EX-MT method, which 

requires the estimation of the parameter 𝜃 = {𝜋𝑘, 𝜇𝑘 , ∑𝑘}𝑘∈{1,2,…,𝐾} . Two 

estimation methods have been proposed: one using only labelled data and the other 

using labelled and unlabelled data. The EX-MT method based on supervised 

learning is called the EX-MT(SL) method, and the EX-MT method based on 

semisupervised learning is called the EX-MT(SSL) method. In the EX-MT(SL) 

method, parameter 𝜃 is estimated to maximise the likelihood of the training data. 

The specific formulas are described in Equations (3.4)–(3.7) in Section 3.2. 

Meanwhile, the EX-MT(SSL) method specifies parameter 𝜃  by maximum 

likelihood using the expectation–maximisation (EM) algorithm based on Zhu and 

Goldberg (2009). The specific formula is given by substituting 𝜆 = 1 in Equations 

(3.8)–(3.13) in Section 3.2. 

2.2 EM-λ algorithm  

Nigam et al. (2000) proposed two improvements to the EM algorithm for 

semisupervised learning in text classification. One is the EM-λ algorithm, which 

assigns a weight 𝜆 only to unlabelled data in the EM algorithm, thus allowing the 

influence of unlabelled data to be adjusted.  

The background for this weighting is related to a problem of the EM algorithm. 

The EM algorithm in semisupervised learning assumes that labelled and unlabelled 

data are generated from the same model. However, this assumption is often not 

true in the real world (e.g., in text classification). Therefore, we assign a weight 𝜆 

to real data for which the process of the EM algorithm does not hold to make the 

unlabelled data valid. 
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3 PROPOSED METHOD 

3.1 Analysis Procedure 

In the proposed method, as in Honma et al. (2022), we assume conditions under 

which homogeneity can be expected for each of multiple normalities and known 

anomalies. We define an “extended unit space” that treats K unit spaces 

simultaneously. We assume that the marginal probability density of 𝑥  in the 

extended unit space follows the probability density function of the GMM, and we 

detect and classify the anomalies based on the model. The model of the extended 

unit space is as follows: 

𝑝(𝑥) = ∑ 𝜋𝑘

𝐾

𝑘=1

𝑁(𝑥|𝜇𝑘, 𝛴𝑘), (3.1) 

where 𝑁(𝑥|𝜇𝑘, 𝛴𝑘) is a multivariate normal distribution that generates individuals 

with class label 𝑘, 𝜇𝑘 is the population mean vector of class 𝑘, 𝛴𝑘 is the population 

covariance matrix of class 𝑘, and 𝜋𝑘 is the population mixture ratio of class 𝑘. The 

specific analysis procedure is described below. The analysis consists of the 

following two steps. 

Step1: Detection of unknown anomalies 

Here, individuals with a small probability of belonging to the extended unit space 

(outliers) are detected as “unknown anomalies.” An individual 𝑥′ is judged as an 

outlier when its abnormality value calculated using the following Equation is large: 

𝑎(𝑥′) = −log ∑ �̂�𝑘𝑁(𝑥′|�̂�𝑘, �̂�𝑘)

𝐾

𝑘=1

. (3.2) 

Here, 𝜃𝑘 = {�̂�𝑘, �̂�𝑘 , �̂�𝑘} is the parameter estimator in class 𝑘 of the extended unit 

space. In addition, when 𝐾 = 1, 𝑎(𝑥′) is an anomaly measure equivalent to the 

Mahalanobis distance, which is an anomaly measure in the MT method. 

Step2: Classification in the extended unit space 

Here, for each individual 𝑥′
 determined to belong to the extended unit space in 

Step1, a K-class classification of “normal” and “known abnormality” is performed. 

This classification is based on the clustering function shown in the following 

Equation: 

𝑝(𝑦 = 𝑘|𝒙′) =
�̂�𝑘𝑁(𝒙′|�̂�𝑘, �̂�𝑘)

∑ �̂�𝑗𝑁(𝒙′|�̂�𝑗 , �̂�𝑗)𝐾
𝑗=1

. (3.3) 

3.2 Parameter Estimation 

The proposed method estimates the parameters 𝜃 = {𝜋𝑘, 𝜇𝑘 , ∑𝑘}𝑘∈{1,2,…,𝐾} of the 

extended unit space. The estimation method is based on the EX-MT method 
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proposed by Honma et al. (2022) and the EM-λ algorithm proposed by Nigam et 

al. (2000). 

The estimation consists of two main steps. First, parameter 𝜃  is estimated by 

maximum likelihood estimation using only labelled data. Second, using this value 

as the initial value, the estimated value is calculated based on the EM-λ algorithm 

using labelled and unlabelled data. 

We assume that the sample size 𝑙  and (𝑝 + 1) -dimensional data set 𝐷𝑙 =
{𝑥𝑖 , 𝑦𝑖}𝑖=1

𝑙  with the class label indicating the “normal” or “known anomaly” labels 

and the sample size 𝑢 and 𝑝-dimensional data set 𝐷𝑢 = {𝑥𝑖}𝑖=𝑙+1
𝑙+𝑢  with no label are 

observed as the training data. In this case, the estimation process of the proposed 

method is as follows. 

Step 1: Estimation of initial values using labelled data 

The likelihood of training data 𝐷𝑙 with labels can be expressed as follows using 

the simultaneous density 𝑝(𝑥𝑖 , 𝑦𝑖|𝜃) and marginal likelihood 𝑝(𝑥𝑖|𝜃): 

𝑝(𝐷𝑙|𝜃) = ∏ 𝑝(𝑥𝑖 , 𝑦
𝑖
|𝜃)

𝑙

𝑖=1

= ∏ 𝜋𝑦𝑖

𝑙

𝑖=1

𝑁(𝑥𝑖|𝜇𝑦𝑖
, ∑

𝑦𝑖
), (3.4) 

where 𝜃 = {(𝜋𝑘, 𝜇𝑘 , ∑𝑘) ∶  𝑘 = 1, … , 𝑙}. 

The parameter 𝜃𝑘 = {𝜋𝑘, 𝜇𝑘 , ∑𝑘} for class 𝑘 that maximises the log-likelihood in 

Equation (3.4) can be estimated as follows: 

�̂�𝑘 =
1

𝑙𝑘

∑ 𝑥𝑖

𝑙𝑘

𝑖=1

, (3.5) 

∑̂𝑘 =
1

𝑙𝑘

∑(𝑥𝑖 −

𝑙𝑘

𝑖=1

�̂�𝑘)(𝑥𝑖 − �̂�𝑘)𝑇 , (3.6) 

�̂�𝑘 =
𝑙𝑘

𝑙
. (3.7) 

Step 2: Estimation using labelled and unlabelled data 

The EM-λ algorithm is executed using the labelled data 𝐷𝑙 and unlabelled data 𝐷𝑢, 

with the estimates calculated from the labelled training data 𝐷𝑙  as initial values. 

The training data consist of 𝐷 = {𝐷𝑙 + 𝐷𝑢} with sample size 𝑙 + 𝑢. 

The log-likelihood of training data 𝐷 is as follows: 

log𝑝(𝐷|𝜃) = ∑ log 𝑝(𝑦𝑖|𝜃)𝑝(𝑥𝑖|𝑦𝑖 , 𝜃)

𝑙

𝑖=1

+ 𝜆 ∑ log ∑ 𝜋𝑘𝑁(𝑥𝑖|𝜇𝑘, Σ𝑘)

𝐾

𝑘=1

.

𝑙+𝑢

𝑖=𝑙+1

(3.8) 

The EM-λ algorithm is used to estimate the parameter 𝜃 that maximises the log-

likelihood. First, the value of the maximum likelihood estimator 𝜃(0) =
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{𝜋𝑘
(0)

, 𝜇𝑘
(0)

, ∑𝑘
(0)

}𝑘∈{1,2,…,𝐾} calculated using labelled data 𝐷𝑙  is obtained as the initial 

value (𝑡 = 0). 

Second, for the E-step, we compute the following burden ratios 𝑟𝑖𝑘 , 𝑖 ∈ {𝑙 + 1, 𝑙 +
2, … , 𝑙 + 𝑢}, 𝑘 ∈ {1, 2, … , 𝐾} for unlabelled data 𝐷𝑢 using the current parameters. 

𝛾𝑖𝑘 =
𝜋𝑘

(𝑡)
𝑁(𝑥𝑖|𝜇𝑘

(𝑡)
, ∑𝑘

(𝑡)
)

∑ 𝜋𝑗
(𝑡)

𝑁(𝑥𝑖|𝜇𝑗
(𝑡)

, ∑𝑗
(𝑡)𝐾

𝑗=1 )
. (3.9) 

Note that the burden ratio 𝑟𝑖𝑘 , 𝑖 ∈ {1,2, … , 𝑙} of labelled data 𝐷𝑙  is 1 if 𝑦𝑖 = 𝑘 and 

0 otherwise. 

Third, in the M-step, the parameter 𝜃(𝑡+1) is updated using the burden rate 𝛾𝑖𝑘  of 

training data 𝐷 as follows: 

𝑙𝑘 = ∑ 𝛾𝑖𝑘 + 𝜆 ∑ 𝛾𝑖𝑘

𝑙+𝑢

𝑖=𝑙+1

𝑙

𝑖=1

, (3.10) 

𝜇𝑘
(𝑡+1)

=
1

𝑙𝑘

(∑ 𝛾𝑖𝑘𝑥𝑖 + 𝜆 ∑ 𝛾𝑖𝑘𝑥𝑖

𝑙+𝑢

𝑖=𝑙+1

)

𝑙

𝑖=1

) , (3.11) 

𝛴𝑘
(𝑡+1)

=

∑
𝛾𝑖𝑘(𝑥𝑖 − 𝜇𝑘

(𝑡+1)
)(𝑥𝑖 − 𝜇𝑘

(𝑡+1)
)𝑇 +

𝜆 ∑ 𝛾𝑖𝑘
𝑙+𝑢
𝑖=𝑙+1 (𝑥𝑖 − 𝜇𝑘

(𝑡+1)
)(𝑥𝑖 − 𝜇𝑘

(𝑡+1)
)𝑇

𝑙
𝑖=1

𝑙𝑘
, (3.12)

 

𝜋𝑘
(𝑡+1)

=
𝑙𝑘

𝑙 + 𝜆𝑢
. (3.13) 

The E-step and M-steps are repeated until the log-likelihood log 𝑝(𝐷|𝜃) converges. 

Then, the analysis process described in Section 3.1 is performed using the 

converged 𝜃. 

4 ACCURACY COMPARISON USING ARTIFICIAL DATA 

In this section, we verify the effectiveness of the proposed method by comparing 

its accuracy with that of conventional methods using artificial data. The 

conventional method is the EX-MT method proposed by Honma et al. (2022). 

4.1 Simulation Settings 

We generate the dataset used in this experiment with the following settings and 

perform 1000 simulations. For the training data, we use labelled data generated to 

follow a multivariate normal distribution and unlabelled data generated to follow 

a multivariate t-distribution. We obtain the t-distribution with location parameter 

𝜇, positive definite inner product matrix ∑, and 𝛾 degrees of freedom, 



QUALITY INNOVATION PROSPERITY  28/1 – 2024  

 

ISSN 1338-984X (online) 

7 

(𝑦;  𝜇, ∑, 𝛾) =

𝛤 (
𝛾 + 𝑝

2
) |∑|−

1

2

(𝜋𝛾)
1

2𝛤 (
𝛾

2
)

{1 +
1

𝛾
(𝑦 − 𝜇)𝑇∑−1(𝑦 − 𝜇)}

−
𝛾+𝑝

2

, (4.1) 

where 𝑦 ∈ ℝ𝑝 (Peel and McLachlan, 2000). In this experiment, the multivariate 𝑡-

distribution data are generated based on the method described by Genz et al. (2023). 

The parameters of the labelled data are as follows: 𝑝 = 10, 𝐾 = 3, 𝜇1 =
(0,0, … ,0)𝑇 , 𝜇2 = (1.5,1.5, … ,1.5)𝑇 , 𝜇3 = (−1.5, −1.5, … , −1.5)𝑇 , ∑1 = ∑2 =
∑3. The diagonal components are set to 1, while the rest of the components are set 

to 0.3. 𝜋1: 𝜋2: 𝜋3 =
9

12
:

2

12
:

1

12
. In this experiment, we assume that “normal,” 

“known anomaly,” and “known anomaly 2” are generated when 𝑘 = 1, 𝑘 = 2, and 

𝑘 = 3, respectively. 

The parameters 𝜇, ∑ and 𝜋 of the unlabelled data are the same as those for the 

labelled data, and the number of data is assumed to be 3,600. Note that the 

covariance matrix of the 𝑡-distribution is 
𝛾

𝛾−2
∑ with 𝛾 degrees of freedom. 

Three types of test data are prepared: threshold, classification and evaluation, and 

unknown abnormality discrimination data. All variables are generated to follow a 

multivariate normal distribution. The parameters of the threshold data and data for 

classification and evaluation are the same as those of the data with labels. 

Meanwhile, the parameters of the data for discriminating unknown abnormalities 

are the same as those of the data with labels, that is, mother mixture ratio, mother 

mean vector, and mother covariance matrix multiplied by 4. The number of data 

for all the test data is 1,000. 

4.2 Evaluation Criteria 

The evaluation indices used are the “unknown abnormality discrimination rate,” 

which is the percentage of unknown abnormalities detected; and 𝑚𝑎𝑐𝑟𝑜𝐹1, which 

checks whether normal or known abnormal data can be classified. Each indicator 

takes a value between 0 and 1; the closer it is to 1, the better. 

 𝑚𝑎𝑐𝑟𝑜𝐹1 is calculated by the following Equation: 

𝑚𝑎𝑐𝑟𝑜𝐹1 =
1

𝐾
∑ 𝐹1𝑘

𝐾

𝑘=1

. (4.2) 

𝐹1𝑘 of class 𝑘 is calculated as follows: 

𝐹1𝑘 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

. (4.3) 

Note that 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 indicates the proportion of individuals classified as class 𝑘 

that are actually class 𝑘, and 𝑅𝑒𝑐𝑎𝑙𝑙𝑘 indicates the proportion of individuals that 

are actually class 𝑘 that can be correctly classified as class 𝑘. See Yang and Liu, 

1999 for details on 𝑚𝑎𝑐𝑟𝑜𝐹1. 
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The unknown abnormality discrimination rate is the percentage of “test data for 

the unknown abnormality discrimination” that are correctly detected as an 

unknown abnormality. 

The threshold value is set such that the normal discrimination rate in the extended 

unit space of the test data (for the threshold setting) is 99%. In other words, the 

rate of misjudgment of the extended unit space as “unknown abnormality” is 1%. 

4.3 Impact of the Number of Labelled Data  

In this experiment, we compare the accuracies of the proposed and conventional 

methods by varying the number of labelled data. The data settings are those 

described in Section 4.1. The number of data with labels (𝑙) is set to 180, 360, 630, 

900, and 1200, while the degree of freedom of the t-distribution of the unlabelled 

data is fixed at 20. 

Under each condition, the parameter of the proposed method, that is, the 

“unlabelled data weight 𝜆,” is moved by 0.1 from 0 to 1, where 𝜆 = 0 and 𝜆 = 1 

are respectively synonymous with the EX-MT(SL) and EX-MT(SSL) methods 

proposed by Homma et al. (2022). In other words, if the evaluation index is 

maximised when the weight 𝜆 is in {𝜆 ∶ 0 < 𝜆 < 1}, we can conclude that the 

proposed method is effective. 

The average values of each indicator over 1,000 simulations are shown in Figures 

1 and 2.  

First, considering Figure 1, in the case of 𝑙 = 360, the proposed method shows 

𝑚𝑎𝑐𝑟𝑜𝐹1 value approximately 6% higher than the comparative methods (𝜆 = 0,1), 

making it the most improved condition. Furthermore, for other values of 𝑙 , 

improvements of over 1% are observed at 𝑙 = 630, 900, while 𝑙 = 180 and 𝑙 =
1200 show performance levels similar to the comparative methods. Based on these 

results, the proposed method is considered more effective in terms of classification 

accuracy than the comparative methods. One possible factor contributing to this 

improvement is the alteration of the occurrence distribution of labelled and 

unlabelled data. Since the assumption of the EM algorithm regarding the 

generation from the same distribution was not met, the EM-λ algorithm, which can 

adjust the influence of unlabelled data, was able to estimate parameters more 

effectively, leading to the improvement in 𝑚𝑎𝑐𝑟𝑜𝐹1 values. 

Additionally, when comparing the degree of improvement for the number of 

labelled data (𝑙), the proposed method showed smaller improvements when 𝑙 was 

too large or too small. This is attributed to the fact that with a large 𝑙, estimation 

using only labelled data is effective, whereas, with a small 𝑙, sufficient information 

cannot be obtained from labelled data, hindering the effective utilisation of 

unlabelled data. 

Next, considering Figure 2, a trend is observed across all patterns of labelled data 

(𝑙) in which the unknown anomaly detection rate remains largely unchanged when 

𝜆  is not equal to 0. This suggests that the EM-λ algorithm employed by the 
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proposed method is primarily effective in improving classification accuracy. 

Consequently, under the experimental conditions of introducing homogenous 

unknown anomalies in all directions around the extended feature space, the 

proposed method performs at a level comparable to the comparative methods. 

 

 

Figure 1 – 𝑚𝑎𝑐𝑟𝑜𝐹1 by number of labelled data 

 

 

Figure 2 – Unknown anomaly discrimination rate by the number of labelled data 

 

4.4 Impact of Degrees of Freedom of 𝒕-Distribution 

In this experiment, we compare the accuracies of the proposed and conventional 

methods by varying the degrees of freedom of the t-distribution of unlabelled data. 

The data settings used in this experiment are the same as those described in Section 

4.1. The number of data with labels is fixed at 360, and the degrees of freedom 𝑑𝑓 

of the unlabelled t-distribution is set to 5, 10, 20, 30, and ∞ (normal distribution). 

For each condition, the parameter of the proposed method, that is, the “weight of 

unlabelled data 𝜆,” is moved by 0.1 from 0 to 1. 
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The average values of each indicator over 1,000 simulations are shown in Figures 

3 and 4. 

Figure 3 shows that the proposed 𝑚𝑎𝑐𝑟𝑜𝐹1 method is at most 6% better than the 

EX-MT method ( 𝜆 = 0,1 ) for unlabelled data with 20 degrees of freedom, 

indicating the greatest improvement. When the degrees of freedom are too small 

or too large, a minimal difference is noted between the proposed and EX-MT 

methods. This result may be due to the nature of the 𝑡 -distribution, which 

approaches a normal distribution as the degrees of freedom increase. When the 

degree of freedom is 30, the unlabelled data following the multivariate 𝑡 -

distribution are much closer to the multivariate normal distribution, which is the 

true distribution, and the process of the EM algorithm to treat the unlabelled data 

as coming from the same model with and without labels is approximately valid. 

Therefore, the weights of the unlabelled data need not be adjusted, and the 

proposed method is not completely effective when the degree of freedom is 30. 

Conversely, when the degree of freedom is 5, the unlabelled data are so far from 

the true distribution that reducing the influence of unlabelled data does not 

facilitate classification. When the degree of freedom of the unlabelled data is 5, 

the value of 𝑚𝑎𝑐𝑟𝑜𝐹1 decreases as the value of 𝜆 increases. 

Figure 4 shows almost no performance difference between the proposed method 

and the EX-MT method (𝜆 = 0,1) in terms of the unknown anomaly discrimination 

rate. In particular, as in the experiment described in Section 4.3, the assignment of 

weight 𝜆 has little effect on the outer boundary of the entire extended unit space 

and is not important for the detection of unknown anomalies. Therefore, when 

unlabelled data are used (𝜆 ≠ 0), the unknown anomaly discrimination rate is close 

to the value when the weight 𝜆 is changed. 

 

 

Figure 3  – 𝑚𝑎𝑐𝑟𝑜𝐹1 by degrees of freedom of 𝑡-distribution 

 



QUALITY INNOVATION PROSPERITY  28/1 – 2024  

 

ISSN 1338-984X (online) 

11 

 

Figure 4  – Unknown anomaly discrimination rate by degrees of freedom of 𝑡-

distribution 

5 ACCURACY COMPARISON USING REAL-WORLD DATA 

5.1 Simulation Settings 

We use The UCI dry bean data set (UCI, 2020). Thirteen thousand six hundred 

eleven dry beans of seven types were photographed with a high-resolution camera, 

and variables related to bean dimensions were obtained. The objective variable is 

the type of bean data, and the explanatory variables are 16 variables. In this 

simulation, beans “SIRA” are treated as normal, beans “CALI” as known 

abnormality 1, and beans “BARBUNYA” as known abnormality 2. For the other 

beans, “DERMASON” is treated as unknown anomaly 1, “SEKER” as unknown 

anomaly 2, “HOROZ” as unknown anomaly 3, and “BOMBAY” as unknown 

anomaly 4. 

For the training data, the number of data with labels is 250, and the number of data 

without labels is 1200, and the data are randomly selected with a population mixing 

ratio of 𝜋1: 𝜋2: 𝜋3 =
9

12
:

2

12
:

1

12
. For the test data, the number of data for threshold 

and classification evaluation is set to 1000 each, and the data are extracted with 

the same ratio of mother mixing ratios as the training data. The unknown anomaly 

data are extracted from four types of unknown anomaly beans, each with 500 

unknown anomalies. 

The evaluation method is the average of the 𝑚𝑎𝑐𝑟𝑜𝐹1 and unknown anomaly 

discrimination rates over 1000 simulations. The unknown abnormality 

discrimination rate is calculated for each of the four types of beans. The threshold 

for discrimination is set so that the normal discrimination rate in the extended unit 

space of the test data (for threshold setting) is 99%. The comparison methods are 

the EX-MT(SL) method (𝜆 = 0) and the EX-MT(SSL) method (𝜆 = 1). 
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5.2 Experimental Results 

Table 1 shows the experimental results. Table 1 shows that the proposed method 

performs best when 𝜆  is 0.6. Under this condition, the proposed method 

outperformed the conventional method in all evaluation indices. In particular, 

some of the beans showed an improvement of about 4% for unknown anomalies. 

Unlike the case of artificial data, the unknown anomaly data were distributed in a 

specific direction, and it is considered that the proposed method was effective for 

the unknown anomaly. 

Table 1  – Comparison of accuracy by 𝜆 in real data 

𝝀 Unknown 

anomaly 1 

discrimination 

rate 

Unknown 

anomaly 2 

discrimination 

rate 

Unknown 

anomaly 3 

discrimination 

rate 

Unknown 

anomaly 4 

discrimination 

rate 

𝒎𝒂𝒄𝒓𝒐 𝑭𝟏 

0  0.325 0.526 0.498 0.806 0.841 

0.1 0.377 0.578 0.554 0.801 0.842 

0.2 0.400 0.598 0.561 0.810 0.843 

0.3 0.410 0.614 0.577 0.831 0.842 

0.4 0.405 0.603 0.563 0.808 0.839 

0.5 0.414 0.614 0.569 0.814 0.837 

0.6 0.436 0.642 0.600 0.852 0.844 

0.7 0.407 0.601 0.558 0.808 0.835 

0.8 0.422 0.627 0.580 0.835 0.837 

0.9 0.419 0.614 0.572 0.824 0.836 

1.0 0.417 0.614 0.565 0.810 0.831 

6 CONCLUSION AND FUTURE WORK 

In this study, we proposed a method that can classify and detect normal, known 

anomalies, and unknown anomalies based on parameter estimation using the EM-

λ algorithm. Simulations using artificial and real data showed the effectiveness of 

the proposed method. 

Two major issues need to be addressed in the future. The first is how to determine 

the parameter 𝜆. In this study, we tried various patterns for the parameter 𝜆. The 

problem is that the parameter 𝜆 is computationally expensive. Second, we would 

like to increase the number of validation data patterns to understand the conditions 

under which the proposed method is effective. We would like to test other 

dimensional patterns on artificial data and other data patterns on real data to verify 

the effectiveness of the proposed method. 
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