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ABSTRACT 

Purpose: This paper suggests a methodology for estimating some Six Sigma 

metrics using confidence intervals.  

Methodology/Approach: This approach assumes that the process follows a 

normal distribution with a constant variance. The mean of the process is shifted 

from the target value to the right or left by 1.5 standard deviations. The estimates 

are based on a random sample of size n taken during a time when the process is 

stable. 

Findings: The paper describes how to create confidence intervals for the number 

of defects per unit, the probability that a unit will be free of defects, and the rolled 

throughput yield.  

Research Limitation/implication: We assume a discrete process in which n units 

of the product are selected during a time when the process is stable.  

Originality/Value of paper: By applying the proposed estimation procedures, 

process performance evaluations can be improved, facilitating decision-making for 

Six Sigma projects. 

Category: Research paper  

Keywords: confidence interval; defects per unit; free of defects unit; rolled 

throughput yield 
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1 INTRODUCTION 

The quality principles outlined in the quality management system standards ISO 

9000:2015 and ISO 9001:2015 call for a factual approach to decision-making, a 

process approach to achieving quality, and the practice of continual improvement. 

Six Sigma methods are powerful tools for top performance in these areas (ISO 

13053 – 1, 2011). 

The concept of Six Sigma was developed in the 1980s at Motorola as an approach 

to reducing variation in production processes. More metrics are used in Six Sigma. 

The purpose of the metrics in a Six Sigma project is to quantify the performance 

of a process. The primary reason for this is the number of defects per million 

opportunities (DPMO). This measure is directly related to the sigma level (sigma 

score) of the process, which is the benchmark used to rank the quality or 

performance of the process. In Six Sigma, the higher the Sigma level, the better 

the process output, which translates into fewer errors, lower operating costs, lower 

risks, improved performance, and better use of resources (Le and Duffy, 2023). 

Except for the mentioned metrics, the number of defects per unit (DPU) and the 

rolled throughput yield (RTY) are frequently used. RTY is the probability that a 

single unit can pass through a series of process steps free of defects (ISO 13053 – 

1, 2011, p. 7).  

The paper builds on the results presented in Terek (2023b), in which a method for 

creating a random sample along with determining the sample size to estimate the 

number of defects per opportunity DPO through a confidence interval is explained. 

Based on this, the confidence interval for the DPMO and the “sigma level” of the 

process are determined.  

The main focus of this paper is to propose a methodology for estimating some Six 

Sigma metrics using confidence intervals. We will show that the confidence 

intervals for DPU and the probability that a unit will be free of defects can be 

formulated based on the confidence interval for DPO. Furthermore, the confidence 

interval for RTY can be formulated based on the created random sample. 

Implementing these procedures makes it possible to improve decision-making on 

Six Sigma projects. 

2 LITERATURE REVIEW 

In Pyzdek (2003), and Pyzdek and Keller (2010), DPMO is defined, and for 

calculation of the RTY, the metric DPMO of the process steps is used. In Bass 

(2007), and Bass and Lawton (2009), the calculation of  DPMO, DPO, DPU, and 

RTY is described. The Poisson distribution model is used to estimate RTY through 

DPU, which is the mean of the distribution. RTY is calculated by multiplying the 

throughput yields of the process steps1. In Antony et al. (2016), the DPMO, DPO, 

 
1 The throughput yield of the step is the proportion of defective items from the production in this step. 
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and RTY are defined, and their computing is described. Additionally, ISO 13053 – 

1, 2011, explains the calculation of the DPMO and RTY.  

Gitlow et al. (2015), Patel (2016), and Basu (2009) provide information on the 

relationships among DPMO, DPO, DPU, and RTY and explain how these metrics 

are computed. However, they only list the formulas for calculating the metrics in 

the sample and do not provide detailed instructions on how to create a sample or 

determine the sample size.  

In Terek (2023a), the method for creating a random sample is described,  along 

with an explanation of the relationships among DPMO, DPO, DPU, and RTY. The 

point estimation of the mentioned metrics is considered. Terek (2023b) explained 

the method for creating a random sample and determining the sample size needed 

to estimate “the number of defects per opportunity” metric in the population 

through a confidence interval.  

3 METHODOLOGY 

The approach is based on a model which assumes that the process has a normal 

distribution with constant variance. To ensure reliable prediction of process 

performance, the process must be stable (in an in-control state), meaning the 

probability distribution parameters of the monitored characteristic do not change 

over time (Montgomery, 2013, p. 29). However, process disturbances may occur 

that cause the process mean to deviate from the target value even when the process 

is stable. In the least favorable case, accumulating small shifts in the process mean 

in the long period can lead to a shift in the process mean of 1.5 standard deviations 

to the right or left of the target value (Bass, 2007). Therefore, the Six Sigma 

concept was designed in such a way that the process mean is shifted from the target 

value by 1.5 standard deviations to the right or left.  

The population consists of the entire production of the given product. A population 

in which it is impossible or unrealistic to record every unit in real-time is known 

to be considered infinite even when, in fact, it is finite. A random sample from an 

infinite population is obtained by selecting n units in a way that satisfies two 

conditions: each selected unit is from the same population, and each unit is selected 

independently (Anderson et al., 2020, p. 324). Then, the observations are 

statistically independent and identically distributed random variables, and the 

usual methods of statistical inference can be used. 

In Terek (2023b) it is explained that when the process is under statistical control, 

one random sample of size n can be taken at a time when the process is stable. To 

ensure the condition that all observations are from the same population is valid, 

the sample should consist of units that were produced at the same time (or as 

closely together as possible). Ideally, the consecutive units of production should 

be taken. The independence condition should be fulfilled in such a way that the 

units are produced independently, and thus, the production of each unit can be 
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considered as the implementation of an independent random experiment. Then, all 

observations are mutually independent and of the same distribution.  

In the same paper, the confidence interval for DPO is formulated as follows2:  

 DPÔ  − 𝑧1−
𝛼

2
∙ √

DPÔ (1−DPÔ )

𝑛∗
≤ DPO ≤ DPÔ  + 𝑧1−

𝛼

2
∙ √

DPÔ (1−DPÔ )

𝑛∗
                    (1) 

 

where 

 

 DPÔ =
𝑐

𝑛units ∙  𝑛CTQC
 is the value of the sample proportion of opportunities that    

                                  generate a defect (also the number of defects per 

                                  opportunity in the sample), 

 𝑧1−
𝛼

2
  ̶  (1 −

𝛼

2
) ∙ 100% quantile of standard normal distribution,  

 𝑛∗ = 𝑛units ∙ 𝑛CTQC  ̶  the number of opportunities in the sample, 

 c     ̶   the number of defects in the sample, 

 𝑛units    ̶  sample size, 

 𝑛CTQC   ̶  the number of critical-to-quality characteristics, 

 DPO   ̶   the proportion of opportunities that generate a defect in the population 

               (also, the number of defects per opportunity in the population, also  

               the probability that opportunity generates a defect), 

 𝑑 = 𝑧1−
𝛼

2
∙ √

DPÔ (1−DPÔ )

𝑛∗
   ̶  the margin of error in the confidence interval (1).   

The relation (1) is recommended to be used when 𝑛∗DPÔ > 5 and, at the same 

time 𝑛∗(1 − DPÔ) > 5.  

4 CONFIDENCE INTERVALS FOR DPU, THE PROBABILITY 

THAT A UNIT WILL BE FREE OF DEFECTS, AND RTY 

The DPU in the population can be estimated with the aid of the sample number of 

defects per unit DPÛ, the probability that a unit will be free of defects using the 

 
2 The value of  𝑛∗ can be calculated for the determined coefficient (1 − 𝛼)  and the margin of error d (see 

Terek, 2023b). 
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Poisson probability distribution, and RTY with the aid of the sample rolled 

throughput yield RTŶ.  

4.1 Confidence intervals for DPU  

The confidence interval for DPU will be formulated based on the confidence 

interval for DPO. The value of the sample number of defects per unit DPÛ  can be 

calculated using the following formula: 

                                                DPÛ =
𝑐

𝑛𝑢𝑛𝑖𝑡𝑠
                                              (2) 

 

After obtaining the confidence interval for DPO, we can easily calculate the 

confidence interval for DPU by multiplying it with 𝑛CTQC. This is because           

DPU = DPO ·  𝑛CTQC and,  DPÛ = DPÔ ·  𝑛CTQC. Therefore                                           

(1 − 𝛼) · 100% confidence interval for DPU is:  

 𝑛CTQC (DPÔ  − 𝑧1−
𝛼

2
∙ √

DPÔ (1−DPÔ )

𝑛∗
) ≤ DPU ≤  𝑛CTQC (DPÔ  +

                           +𝑧1−
𝛼

2
∙ √

DPÔ (1−DPÔ )

𝑛∗
)                                                          (3) 

 

In the following example, we will refer to the study conducted by Terek (2023b). 

Example. The study analysed a final product with four critical-to-quality 

characteristics. The production process was monitored using Shewhart control 

charts3. The confidence coefficient of 0.95 and the margin of error of 0.01 were 

used to calculate the sample size of 235 units needed for the confidence interval 

for DPO. During the random sampling, the control charts did not indicate any shift 

of the process to an out-of-control state. In the obtained random sample, 20 defects 

were found. Based on this, the 95% confidence interval for DPO was calculated. 

The resulting interval was [0.01183372; 0.03016628], and the corresponding 95% 

confidence interval for DPMO was [11,834; 30,166]. Using this interval, the 95% 

confidence interval for the sigma level was determined as [3.38; 3.76]. 

We will now calculate the corresponding confidence interval for DPU based on the 

given example. 

After substitution of DPÔ =
20

235 ∙ 4
= 0.021;  𝑛CTQC = 4; 𝑧1−

𝛼

2
 = 1.96;                          

𝑛∗ = 235 · 4  = 940 into the relation (3) we get: 

                             0.047334879 ≤ DPU ≤ 0.120665121                          (4) 

 
3 For more about Shewhart control charts see Montgomery (2013), and Terek and Hrnčiarová (2004). 
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At 95% confidence, the number of defects per unit in the population is between 

0.047334879 and 0.120665121, or the number of defects per thousand units in 

the population is approximately between 47 and 121. 

4.2 Confidence intervals for the probability that a unit will be free of 

defects 

The probability that a particular number of defects will occur on a unit could be of 

interest. The Poisson distribution can be used to find such probabilities. In general, 

the Poisson distribution can be used to model the number of successes that occur 

during a given time interval or in a specified area. It is assumed (Miller and Miller, 

2014, p. 163): 

(1) the numbers of successes occurring in nonoverlapping time intervals or regions 

are independent,  

(2) the probability of a single success occurring in a very short time interval or in 

a very small region is proportional to the length of the time interval or the size of 

the region,  

(3) the probability of more than one success occurring in such a short time interval 

or falling in such a small region is negligible. 

The probability function of the Poisson distribution is: 

𝑝𝑘 = 𝑃(𝑋 = 𝑘) =
𝜆𝑘

𝑘!
𝑒−𝜆 ,        for k = 0, 1, 2, ...  

where 

 𝜆 > 0 is the expected value of the number of successes occurring in the given time 

              interval or region, 

k    ̶ the number of successes occurring in the given time interval or region. 

When we consider the occurrence of a defect as a success, we can model the 

number of defects that occur on a single unit of the product by using the Poisson 

distribution. Let k = 0, 1, 2, ..., be the number of defects that occur on one unit. 

Then, the probability that k defects will occur on one unit is (Bass, 2007, p. 81) 

(Bass and Lawton, 2009, p. 132): 

 

𝑝𝑘 = 𝑃(𝑋 = 𝑘) =
DPU𝑘

𝑘!
𝑒−DPU 

 

The probability that a unit is free of defects (contains k = 0 defects) is: 

                                 𝑝0 = 𝑃(𝑋 = 0) =
DPU0

0!
𝑒−DPU = 𝑒−DPU                                      (5) 
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and the probability that at least one defect occurs on the unit is: 

                                               1 − 𝑝0 = 1 − 𝑒−DPU                                                      (6)     

  

We denote the lower limit and the upper limit in the confidence interval for DPU 

as DPUL, and DPUU. We can estimate the mean of the Poisson distribution in the 

confidence interval for 𝑝0 by the lower and upper limits of the confidence interval 

for DPU. So (1 − 𝛼) · 100%  confidence interval for 𝑝0 is: 

                                             𝑒−DPUU ≤ 𝑝0 ≤ 𝑒−DPUL                                         (7) 

Example ̶ continued 1. Continuing our example, we determine the probability of 

a unit being defective or non-defective. We define a unit as non-defective if there 

are no defects and consider it as defective if there is at least one defect. To estimate 

this probability, we create a 95% confidence interval for the probability of a unit 

being non-defective and for the probability of it being defective. 

The interval (4) has a lower limit of DPUL = 0.047334879   and an upper limit of 

DPUU = 0.120665121. Using relation (7), we can determine a 95% confidence 

interval for the probability that a unit in the population is non-defective. This 

involves calculating the lower limit 𝑝0L and the upper limit 𝑝0U: 

𝑝0L = 𝑒−0.120665121 = 0.886330723 

𝑝0U = 𝑒−0.047334879 = 0.953767947 

 

At 95% confidence, the probability that the unit in the population is non-defective 

is between 0.886330723 and 0.953767947. Otherwise, at 95% confidence, the 

proportion of non-defective units in the population is approximately between  

88.63% and 95.38%. 

To calculate the probability that the unit is defective, we subtract the probability 

that the unit is non-defective from 1. For instance, in our example, we can 

determine a 95% confidence interval for the probability that a unit is defective by 

calculating the lower limit (1  ̶  𝑝0U) and the upper limit (1  ̶  𝑝0L) of this interval: 

1 − 𝑝0U = 0.046232053 

1 − 𝑝0L = 0.113669277 

 

At 95% confidence, the probability that a unit in the population is defective is 

between 0.046232053 and 0.113669277. Otherwise, at 95% confidence, the 

proportion of defective units in the population is approximately between 4.62% 

and 11.37%. 
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4.3 Confidence intervals for RTY 

RTY, also known as FPY (first pass yield, quality rate), is defined as the ratio of 

completely defect-free units without any rework4 during the process at the end of 

a process to the total number of units at the start of the process (Basu, 2009). It is 

used as a key performance indicator to measure overall process effectiveness. It is 

necessary to distinguish between RTY in the population and sample rolled 

throughput yield RTŶ. 

The confidence interval for RTY will be formulated as the confidence interval for 

a proportion. We will denote the number of reworked or scrapped units in the 

sample as 𝑐∗. To calculate the sample rolled throughput yield RTŶ,  we can use the 

formula given below: 

                                                RTŶ =
𝑛𝑢𝑛𝑖𝑡𝑠−𝑐∗

𝑛𝑢𝑛𝑖𝑡𝑠
                                         (8) 

The sample rolled throughput yield can be understood as the proportion of defect-

free units in a sample. The unit in the population is defect-free with probability 

RTY, and it is defective with probability (1   ̶  RTY). The probability of RTY can 

also be interpreted as the proportion of defect-free units in the population. The 

proportion RTY can be estimated using (1   ̶  α) · 100% confidence interval: 

         RTŶ  − 𝑧1−
𝛼

2
∙ √

RTŶ (1−RTŶ )

𝑛𝑢𝑛𝑖𝑡𝑠
≤ RTY ≤ RTŶ  + 𝑧1−

𝛼

2
∙ √

RTŶ (1−RTŶ )

𝑛𝑢𝑛𝑖𝑡𝑠
          (9) 

 

Example – continued 2. Assume that 20 defects were found across 17 units  

during the process, where some defects were fixable and others were not. As a 

result, a total of 𝑐∗ = 17 units were either scrapped or repaired. We calculate a 

95% confidence interval for the  RTY. 

After substituting 235 for 𝑛𝑢𝑛𝑖𝑡𝑠, and 17 for 𝑐∗ in relation (8), we get: 

RTŶ = 0.927659574  

 

After substituting the value of 0.927659574 for RTŶ, 1.96 for 𝑧1−
𝛼

2
, and 235 for 

𝑛𝑢𝑛𝑖𝑡𝑠 in relation (9), we can calculate a 95% confidence interval for RTY: 

0.894538304 ≤ RTY ≤ 0.960780844 

 

At 95% confidence, the rolled throughput yield is approximately between 89.45% 

and 96.08%. Otherwise, at 95% confidence, the proportion of non-defective units 

in the population is approximately between 89.45% and 96.08%, or the proportion 

 
4 That means without being rerun, retested, returned, or diverted into an offline repair area. 
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of units passing through a series of process steps free of defects is approximately 

between  89.45% and 96.08%. 

5 CONCLUSION 

The purpose of the paper is to propose the procedures for estimating some metrics 

in Six Sigma through confidence intervals. A method for estimating process 

performance characteristics such as DPU, 𝑝0, and RTY are described. The 

methodology builds on the results presented in Terek (2023b), in which a method 

for creating a random sample and determining the sample size to estimate the 

number of defects per opportunity DPO through a confidence interval is offered. 

Based on this, the confidence interval for the DPMO and the “sigma level” of the 

process are determined. In this paper, the confidence interval for DPU is 

formulated based on the confidence interval for DPO. Additionally, based on the 

confidence interval for DPU, the confidence interval for 𝑝0 is formulated. Besides, 

based on the created random sample, the confidence interval for RTY is formulated. 

We have described a method for calculating the confidence interval [𝑝0L; 𝑝0U] for 

the probability 𝑝0, that no defects occur on a unit. Additionally, we have developed 

a confidence interval for RTY. According to ISO 13053 – 1 (2011, p. 7), RTY is 

defined as the probability that a single unit can pass through a series of process 

steps free of defects. This means that RTY is essentially the same as the probability 

of no defects occurring on a unit. The main difference between the confidence 

interval for  𝑝0 and that for RTY, is that the former is based on a theoretical model 

(Poisson distribution) of the occurrence of a certain number of defects on units, 

while the latter relies on information obtained from sampling about the proportion 

of defective units in the sample. In our example, the confidence intervals for 𝑝0, 

and RTY differ very little.  

All procedures are based on the established Six Sigma concept that the mean of a 

normally distributed process with constant variance is shifted by 1.5 standard 

deviations to the right or to the left of the target value and on a random sample of 

size n taken in such a way that the consecutive units of production were taken, at 

a time when the process was stable.  

The proposed methods can enhance the accuracy of process performance 

estimation, leading to better decision-making for Six Sigma projects. They can be 

very useful, particularly in the define phase of the DMAIC methodology. For 

instance, consider the results obtained from a random sample of size 235 in our 

example. At 95% confidence,  the number of defects per million opportunities is 

between 11,834 and 30,166, the sigma level of the process is between 3.38 and 

3.76 (Terek, 2023b), the number of defects per thousand units is approximately 

between 47 and 121, and the proportion of units passing through a series of process 

steps free of defects is approximately between  89.45% and 96.08%. Armed with 

such valuable information, we can make better decisions regarding our Six Sigma 

projects.  
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