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ABSTRACT 

Purpose: When designing an input-output system susceptible to noise, engineers 

assume a functional relation between the input and the output. The Taguchi method, 

which uses a dynamic, robust parameter design (RPD) to evaluate the robustness 

of the input-output relation against noise, is employed. This study aims to address 

extending the scope of use of a dynamic RPD. 

Methodology/Approach: A target system in a typical dynamic RPD can be 

interpreted as one in which the relation between the input and the output is a linear 

model, and the output error follows a normal distribution. However, an actual 

system often does not conform to this premise. Therefore, we propose a new 

analysis approach that can realize a more flexible system design by applying a 

response surface methodology (RSM) based on a generalized linear model (GLM) 

to dynamic RPD. 

Findings: The results demonstrate that 1) a robust solution can be obtained using 

the proposed method even for a typical dynamic RPD system or an actual system, 

and 2) the target function can be evaluated using an adjustment parameter. 

Research Limitation/implication: Further analysis is required to determine 

which factor(s) in the estimated process model largely contribute(s) to changes in 

the adjustment parameter. 

Originality/Value of paper: The applicability of typical dynamic RPD is limited. 

Hence, this study’s analytical process provides engineers with greater design 

flexibility and deeper insights into dynamic systems across various contexts. 

Category: Research paper 

Keywords: robust parameter design; dynamic system; generalized linear model; 

response surface methodology; Taguchi method 
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1 INTRODUCTION  

When designing an input-output system, engineers assume a functional relation 

between the input and the output (Tatebayashi, 2004). However, in practice, this 

functional relation does not consistently hold because of noise, which results in 

critical quality defects. Therefore, the Taguchi method uses a dynamic, robust 

parameter design (RPD), an indispensable design method, for evaluating the 

robustness of the input-output relation against noise. The method is centred around 

reducing variations in a process, and it accounts for noise at the design stage. 

In a typical dynamic RPD, the relation between the input 𝑀 and output 𝑦 of a 

system is assumed to be linear, while the output error 𝜀 is assumed to follow a 

normal distribution and possess equal variability. Based on Nagata’s (2009) 

explanation, this assumption can be defined using the following additive model: 

𝑦 = 𝛽𝑀 + 𝜀, 

𝜀~𝑁(0, 𝜎2). 
(1) 

Hence, methods derived from the RPD (e.g., Kawamura and Takahashi, 2013) also 

assume that the data follows these assumptions. However, actual systems often do 

not conform to these assumptions. For example, Mikami and Yano (2004) 

employed a typical dynamic signal-to-noise ratio analysis with the number of 

thermotolerant bacteria as the output and the incubation time as the input. 

However, the number of bacteria per unit of time generally followed a Poisson 

distribution. Moreover, analyses such as the growth rate of bean sprouts (Yoshino, 

1995) assume a growth curve where the relation between the input and output of 

the system is nonlinear. 

To realize a more flexible system design, we focus on a generalized linear model 

(GLM), a nonlinear model with a nonlinear input-output relation. It is useful for 

analyzing experimental data because it can handle output errors that follow a non-

normal distribution with unequal variability (Lee and Nelder, 1998). If the typical 

dynamic RPD is reconsidered in the GLM context, the linear predictor then 

becomes 𝛽𝑀 , the link function is absent, and the error structure is normally 

distributed. 

Therefore, we propose a new analytical approach that can realize a more flexible 

system design by applying response surface methodology (RSM) based on GLM 

to dynamic RPD. The formulation of the proposed method is based on the 

framework by Myers et al. (2005), in which an approach to RPD was developed to 

verify its usefulness. In this study, we demonstrated that our proposed method can 

enable engineers to attain greater design freedom and gain insights into the 

experimental data of dynamic systems with various backgrounds. 

The remainder of this paper is organized as follows. Section 2 explains the 

approach RPD proposed by Myers et al. (2005). Section 3 proposes a new approach 

to RPD for dynamic systems. Section 4 analyzes actual data to verify the 
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performance of the proposed method. Section 5 presents the verification results. 

Section 6 summarizes the study and provides future recommendations. 

2 STATIC RPD USING RSM BASED ON GLM 

Myers et al. (2005) proposed an approach for static RPD using RSM based on 

GLM for a static system—a system with fixed inputs. The method aimed to design 

the system to ensure the output is constantly maintained at the target value. They 

considered the conditional population mean 𝜇𝑖𝑗 of response 𝑦𝑖𝑗, as follows: 

𝑔(𝜇𝑖𝑗) = 𝛽0 + 𝐱𝑖
𝑇𝛃 + 𝐱𝑖

𝑇𝐁𝐱𝑖 + 𝐳𝑗
𝑇𝛄 + 𝐱𝑖

𝑇𝚲𝐳𝑗 , 

𝐱𝑖 = (

𝑥𝑖1

⋮
𝑥𝑖𝑝

) , 𝐳𝑗 = (

𝑧𝑗1

⋮
𝑧𝑗𝑞

) , 𝐳𝑗~𝑁(0, 𝜎𝑧
2𝐈𝑞). 

(2) 

Provided the control factors 𝐱𝑖 and noise factors 𝐳𝑗 use the GLM framework, 𝜇 =

𝜂 and 𝜂 = 𝜔(𝐱, 𝐳) is the linear predictor. The error structure is chosen to fit the 

data and the link function 𝑔(∙)  is chosen accordingly. The index 𝑖 = 1,2, … , 𝐼 

denotes the combination of control factors, and 𝑗 = 1,2, … , 𝐽  denotes the 

combination of noise factors. 𝛽0  is the intercept parameter. The 𝑝  dimensional 

vector 𝛃  denotes the vector of coefficients for the control factors, while the 𝑞  

dimensional vector 𝛄 represents the vector of coefficients for the noise factors. The 

𝑝 × 𝑞 matrix 𝚲 denotes the matrix of control by noise interaction coefficients, and 

the 𝑝 × 𝑝 matrix 𝐁 represents the matrix of second order effect coefficients of the 

control factors. Each level of the noise factor follows a normal distribution 

𝑁(0, 𝜎𝐳
2). 

Subsequently, the process mean 𝐸𝐳(𝜇𝑖𝑗)  and process variance 𝑉𝑎𝑟(𝑦𝑖𝑗)  were 

derived. Using the target value 𝑇 of the response, the following evaluation function 

was defined as 

𝑀𝑆𝐸 = (𝐸𝐳(𝜇𝑖𝑗) − 𝑇)
2

+ 𝑉𝑎𝑟(𝑦𝑖𝑗). (3) 

In the RPD proposed by Myers et al. (2005), the design solution is a combination 

of the control factors that minimize the evaluation function. 

3 DYNAMIC RPD USING RSM BASED ON GLM 

3.1 Proposal of a new method 

In this section, we formulate an approach for dynamic systems based on Section 

2. This method comprises four steps. In step 1, the RSM is estimated using a GLM 

or double generalized linear model (DGLM). The GLM was proposed by Nelder 

and Wedderburn (1972) and holds the dispersion parameter as a constant. The 
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DGLM, an extension of the GLM proposed by Smyth (1989), also models the 

dispersion parameter by enabling additional flexible modelling. 

We consider the conditional population mean 𝜇𝑖𝑗𝑘 of the response 𝑦𝑖𝑗𝑘, as follows: 

𝑔(𝜇𝑖𝑗𝑘) = 𝛽0 + 𝐱𝑖
𝑇𝛃 + 𝐳𝑗

𝑇𝛄 + 𝐦𝑘
𝑇𝛅 + 𝐱𝑖

𝑇𝚲𝐳𝑗  + 𝐱𝑖
𝑇𝚷𝐦𝑘 + 𝐳𝑗

𝑇𝛀𝐦𝑘 , 

𝐱𝑖 = (

𝑥𝑖1

⋮
𝑥𝑖𝑝

) , 𝐳𝑗 = (

𝑧𝑗1

⋮
𝑧𝑗𝑞

) , 𝐦𝑘 = (
𝑓1(𝑀𝑘)

⋮
𝑓𝑛(𝑀𝑘)

) , 𝐳𝑗~𝑁(0, 𝜎𝐳
2𝐈𝑞). 

(4) 

Given that 𝐱𝑖 , 𝐳𝑗 , and 𝐦𝑘  use the GLM or DGLM framework, 𝜇 = 𝜂  and  

𝜂 = 𝜔(𝐱, 𝐳, 𝑀) is the linear predictor. The error structure is chosen to fit the data 

and the link function 𝑔(∙) is chosen accordingly. The index 𝑖 = 1,2, … , 𝐼 denotes 

the combination of control factors; 𝑗 = 1,2, … , 𝐽  represents the combination of 

noise factors; and 𝑘 = 1,2, … , 𝐾  denotes the level of the signal factor. 𝛽0  is the 

intercept parameter, 𝐱𝑖 denotes the control factors, 𝐳𝑗 represents the noise factors 

and 𝐦𝑘  denotes the functions of the signal factor. The 𝑝  dimensional vector 𝛃 

signifies the vector of coefficients for the control factors, the 𝑞 dimensional vector 

𝛄 denotes that for the noise factors, and the 𝑛 dimensional vector 𝛅 denotes that 

for functions of the signal factor. The 𝑝 × 𝑞  matrix 𝚲  represents the matrix of 

control by noise interaction coefficients, the 𝑝 × 𝑛 matrix 𝚷 is the matrix of the 

control by function of the signal interaction coefficients, and the 𝑞 × 𝑛 matrix 𝛀 

represents the matrix of the noise by function of the signal interaction coefficients. 

Each level of the noise factor follows a normal distribution 𝑁(0, 𝜎𝐳
2). 

In step 2, we derive the process mean 𝐸𝐳(𝜇𝑖𝑗𝑘) . iirst, 𝐸𝐳(𝜇𝑖𝑗𝑘)  is obtained by 

taking the expected value for the noise factors as follows: 

𝐸𝐳(𝜇𝑖𝑗𝑘) = 𝐸𝐳(𝑔−1[𝛽0 + 𝐱𝑖
𝑇𝛃 + 𝐳𝑗

𝑇𝛄 + 𝐦𝑘
𝑇𝛅 + 𝐱𝑖

𝑇𝚲𝐳𝑗  + 𝐱𝑖
𝑇𝚷𝐦𝑘

+ 𝐳𝑗
𝑇𝛀𝐦𝑘]) = 𝐸𝐳(𝑞[𝜂]), 

(5) 

where 𝑞 is the inverse of the link function 𝑔. 

Second, using a second order Taylor series approximation around the mean of the 

linear predictor 𝜂0 = 𝐸𝐳(𝜂), the process mean is given as: 

𝐸𝐳(𝜇𝑖𝑗𝑘) ≈ 𝐸𝐳 (𝑞[𝜂0] + 𝑞′[𝜂0](𝜂 − 𝜂0) +
1

2
𝑞′′[𝜂0](𝜂 − 𝜂0)2) 

= 𝑞[𝜂0] +
1

2
𝑞′′[𝜂0]𝑉𝑎𝑟𝐳(𝜂), 

𝑞′[𝜂0] = [
𝜕𝜇𝑖𝑗𝑘

𝜕𝜂
]

𝜂=𝜂0

, 𝑞′′[𝜂0] = [
𝜕2𝜇𝑖𝑗𝑘

𝜕𝜂2
]

𝜂=𝜂0

. 

(6) 

The variance of the linear predictor 𝑉𝑎𝑟𝐳(𝜂) is defined as 

𝑉𝑎𝑟𝒛(𝜂) = (𝛄 + 𝐱𝑖
𝑇𝚲 + 𝐦𝑘

𝑇𝛀)𝑉𝑎𝑟𝐳(𝐳𝑗)(𝛄 + 𝐱𝑖
𝑇𝚲 + 𝐦𝑘

𝑇𝛀)𝑇 . (7) 

In step 3, we derive the process variance 𝑉𝑎𝑟(𝑦𝑖𝑗𝑘) using Lee and Nelder’s (2003) 
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framework. 𝑉𝑎𝑟(𝑦𝑖𝑗𝑘) is given as: 

𝑉𝑎𝑟(𝑦𝑖𝑗𝑘) = 𝑉𝑎𝑟𝐳[𝐸(𝑦𝑖𝑗𝑘|𝐳𝑗)] + 𝐸𝐳[𝜙𝑖𝑗𝑘𝑉(𝜇𝑖𝑗𝑘)]. (8) 

The first term shows the variation due to noise factors, while the second term 

expresses the variation independent of the noise factors. 𝜙𝑖𝑗𝑘  (dispersion 

parameter) represents the variation in population mean 𝜇𝑖𝑗𝑘, and the variance in 

independent distribution, indicating that it is unaffected by the increase or decrease 

in the process mean. ior simplicity, we consider the dispersion parameter as 𝜙𝑖𝑘, 

which remains constant regardless of noise factors. 𝑉(𝜇𝑖𝑗𝑘) denotes the change in 

variance relative to the population mean 𝜇𝑖𝑗𝑘 of the distribution. This indicates that 

the variation is affected by the increase or decrease in the process mean. 

When estimating the RSM with GLM, 𝜙𝑖𝑘 is fixed to a constant. When the RSM 

is estimated using DGLM, we consider the dispersion parameter for the conditional 

population mean 𝜙𝑖𝑘 of the response 𝑑𝑖𝑘, as follows: 

ℎ(𝜙𝑖𝑘) = 𝛽0 + 𝐱𝑖
𝑇𝛃 + 𝐦𝑘

𝑇𝛅 + 𝐱𝑖
𝑇𝚷𝐦𝑘, 

𝐱𝑖 = (

𝑥𝑖1

⋮
𝑥𝑖𝑝

) , 𝐦𝑘 = (
𝑓1(𝑀𝑘)

⋮
𝑓𝑛(𝑀𝑘)

), 
(9) 

given 𝐱𝑖  and 𝐦𝑘 . The index 𝑖 = 1,2, … , 𝐼  denotes the combination of control 

factors, and 𝑘 = 1,2, … , 𝐾 represents the level of the signal factor. Based on Smyth 

and Verbyla’s (1999) explanation, 𝑑𝑖𝑘 refers to 𝑑(𝑦, 𝜇) obtained by transforming 

the exponential family distribution as shown in 

𝑓(𝑦; 𝜇, 𝜙) = 𝑏(𝑦, 𝜙)exp {−
1

2𝜙
𝑑(𝑦, 𝜇)}. (10) 

𝑑 is a distance measure between 𝑦 and 𝜇. 𝛽0 is the intercept parameter, 𝐱𝑖 denotes 

the control factor and 𝐦𝑘  represents the function of the signal factor. The 𝑝  

dimensional vector 𝛃 represents the vector of coefficients for the control factors 

while the 𝑛 dimensional vector 𝛅 denotes that for functions of the signal factor. 

The 𝑝 × 𝑛  matrix 𝚷  denotes the matrix of the control by function of the signal 

interaction coefficients, and the link function is ℎ(∙) . Notably, the variables, 

vectors, and matrices of the coefficient that constitute 𝜙𝑖𝑘  differ from those of 𝜇𝑖𝑗𝑘. 

We adopt the estimation method proposed by Smyth and Verbyla (1999). 

iirst, we derive the first term of the process variance, represented in  

𝑉𝑎𝑟𝐳[𝐸(𝑦𝑖𝑗𝑘|𝐳𝑗)]

= 𝑉𝑎𝑟𝐳[𝑞(𝛽0 + 𝐱𝑖
𝑇𝛃 + 𝐳𝑗

𝑇𝛄 + 𝐦𝑘
𝑇𝛅 + 𝐱𝑖

𝑇𝚲𝐳𝑗  + 𝐱𝑖
𝑇𝚷𝐦𝑘

+ 𝐳𝑗
𝑇𝛀𝐦𝑘)]. 

(11) 

This equation can be approximated as: 
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𝑉𝑎𝑟𝐳[𝜇𝑖𝑗𝑘] ≈ [
𝜕𝜇𝑖𝑗𝑘

𝜕𝜂
]

𝜂=𝜂0

𝑉𝑎𝑟𝐳[𝜂] [
𝜕𝜇𝑖𝑗𝑘

𝜕𝜂
]

𝜂=𝜂0

, (12) 

using the delta method. The latter can be represented as:  

𝑉𝑎𝑟𝐳[𝜇𝑖𝑗𝑘] ≈ [𝑉(𝜇𝑖𝑗𝑘)]
𝜂=𝜂0

2
Ψ𝜂=𝜂0

(𝛄 + 𝐱𝑖
𝑇𝚲

+ 𝐦𝑘
𝑇𝛀)𝑉𝑎𝑟𝐳(𝐳𝑗)(𝛄 + 𝐱𝑖

𝑇𝚲 + 𝐦𝑘
𝑇𝛀)𝑇Ψ𝜂=𝜂0

, 
(13) 

using the chain rule. Ψ = 𝜕𝜃 𝜕𝜂⁄  and 𝜃 are location parameters. 

Second, we derive the second term of the process variance using a second order 

Taylor series approximation around 𝜂0, given as: 

𝐸𝐳[𝜙𝑖𝑘𝑉(𝜇𝑖𝑗𝑘)] ≈ 𝜙𝑖𝑘 {[𝑉(𝜇𝑖𝑗𝑘)]
𝜂=𝜂0

+
1

2
[
𝜕2𝑉(𝜇𝑖𝑗𝑘)

𝜕𝜂2
]

𝜂=𝜂0

𝑉𝑎𝑟𝐳[𝜂]}. (14) 

Finally, 𝑉𝑎𝑟(𝑦𝑖𝑗𝑘) is defined as 

𝑉𝑎𝑟(𝑦𝑖𝑗𝑘) = [
𝜕𝜇𝑖𝑗𝑘

𝜕𝜂
]

𝜂=𝜂0

𝑉𝑎𝑟𝐳[𝜂] [
𝜕𝜇𝑖𝑗𝑘

𝜕𝜂
]

𝜂=𝜂0

+ 𝜙𝑖𝑘 {[𝑉(𝜇𝑖𝑗𝑘)]
𝜂=𝜂0

+
1

2
[
𝜕2𝑉(𝜇𝑖𝑗𝑘)

𝜕𝜂2
]

𝜂=𝜂0

𝑉𝑎𝑟𝐳[𝜂]}. 

(15) 

In step 4, the parameters are optimized. Hence, we define the necessary evaluation 

function as the adjusted sum of square errors (𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸) for optimization, as 

follows: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 = ∑ [{𝑡 − 𝜅𝐸𝐳(𝜇𝑖𝑗𝑘)}
2

+ 𝑉𝑎𝑟(𝑦𝑖𝑗𝑘)]

𝑀∈M

. (16) 

M is the set of signal factor levels. 𝑡 denotes the target function 𝑞(𝛽0∗ + 𝛃∗
′ 𝑚) and 

𝜅  represents the adjustment parameter (0 ≤ 𝜅) . The first term measures the 

deviation between 𝑡 and 𝐸𝐳(𝜇) while the second measures the process variation. 𝜅 

is used to make adjustments between the target function and the process mean. 

Hence, the 𝜅2 scale of variance is omitted. This adjustment allows for the process 

mean to approach the target function, which is the design concept. If the target 

function is less than the estimated process mean, then 𝜅 is less than 1; otherwise, 

𝜅 is greater than 1. Thus, the target function can be evaluated. 

Next, we explain the optimization method. iirst, we minimize the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 

with an adjustment parameter of one to derive the design solution. We use the 

design solution and 𝜅 = 1 to calculate the first term of the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸, which 

is the evaluation value. Second, we derive the design solution by generating the 

adjustment parameter and minimizing the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 to which it is assigned. 

We use the design solution and the generated adjustment parameter to calculate the 

first term of the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸. If the first term is less than the evaluation value, 

the generated adjustment parameter is adopted and the evaluation value is updated. 
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Otherwise, a new adjustment parameter is generated. This series of processes is 

repeated until the adjustment parameter yielding the lowest evaluation value is 

derived. iinally, we find the combination of control factors that minimize the 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸  substitution using the adjustment parameter identified in the 

previous step. The 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸  is minimized by determining an adjustment 

parameter using the simulated annealing method and deriving the design solution 

using the quasi-Newton method. 

The typical dynamic RPD is a two stage design that first decreases variance and 

subsequently enables the mean to approach the target function (e.g., dynamic 

signal-to-noise ratio analysis). Contrastingly, our method first draws the mean 

closer to the target function and subsequently decreases the variance. This 

departure arises because the system under consideration entails a tradeoff between 

mean and variance, a complexity beyond the scope of conventional two stage 

design. 

3.2 Related research 

Kume and Nagata (2013) designed the parameters by defining and minimizing the 

following equation: 

𝑊𝑆𝑆𝐸 = 𝑤 ∑ {𝐸𝐳(𝜇𝑖𝑗𝑘) − 𝑡}
2

𝑀∈M

+ (1 − 𝑤) ∑ 𝑉𝑎𝑟(𝑦𝑖𝑗𝑘)

𝑀∈M

, (17) 

where 𝑤  denotes an arbitrary weight to balance the first and second terms  

(0 ≤ 𝑤 ≤ 1). If 𝐸𝐳(𝜇𝑖𝑗𝑘) needs to be adjusted to 𝑡, 𝑤 should be set to a higher 

value; otherwise, it should be set to a lower value. However, a robust solution 

cannot be obtained without setting an appropriate target function for the estimate 

process model. This is particularly true when the difference between the process 

mean and target function is significant. Additionally, the arbitrary nature of the 

decision of 𝑤 presents another challenge. 

4 VALIDATION OF METHODS USING ACTUAL DATA 

4.1 Overview of data 

In this section, we verify the design solution using 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 and actual data. 

The experimental data of the high-speed response valve (also known as a high-

speed on/off solenoid valve) employed by Enkawa and Miyakawa (1992) is used 

along with dynamic systems. In a high-speed response valve, the input-output 

relation for the generic function is given by the following equation: 

flow rate = constant × duty ratio × √pressure difference. (18) 

The input (signal factor) is the square-root transformation of the pressure 

difference, the output (response 𝑦) represents the flow rate, and the duty ratio 

denotes the ratio of the time the valve is on to the times it is on and off. 
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Table 1 – Experimental data for the high-speed response valve (Enkawa and 

Miyakawa, 1992) 

 𝑨 𝑩  𝑪   𝑫 𝑺𝟏 𝑺𝟐 𝑺𝟑 

No. 1 2 3 4 5 6 7 𝑮𝟏 𝑮𝟐 𝑮𝟏 𝑮𝟏 𝑮𝟐 𝑮𝟏 

1 1 1 1 1 1 1 1 15 33 31 52 58 78 

2 1 1 1 2 2 2 2 38 46 69 75 111 126 

3 1 2 2 1 1 2 2 22 28 48 51 52 93 

4 1 2 2 2 2 1 1 11 38 26 77 95 135 

5 2 1 2 1 2 1 2 18 19 42 48 65 71 

6 2 1 2 2 1 2 1 39 65 65 98 82 103 

7 2 2 1 1 2 2 1 5 45 38 78 38 86 

8 2 2 1 2 1 1 2 21 58 59 113 101 121 

In this experiment, four control factors are assigned to an inner 𝐿8  orthogonal 

array. 𝐴 is the stroke, 𝐵 is the spring-attachment load, 𝐶 is the pressure balance, 

and 𝐷 is the oil passage area. The noise factor 𝐺 and signal factor 𝑆 are arranged 

in a one-by-one outer array. In the following, the notation of the noise factor is 𝑍, 
and that of the signal factor is 𝑀. The noise factor is the input voltage. The first 

level of the control factor and noise factor is 1, and the second level is −1. The 

signal factor is 4 for the first level, 8 for the second level, and 12 for the third level. 

These data follow the typical dynamic RPD assumptions. Therefore, it is ideal that 

the design solution using 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 is consistent with their conclusions—the 

good design solution is to set (𝐵, 𝐷) = (1, −1) to reduce variation in the input-

output relation and 𝐶 to adjust the output. 

4.2 Data analysis 

First, we estimate the response surface using 𝜇 of the link function and DGLM in 

the normal distribution as follows: 

𝜇𝑖𝑗�̂� = (7.42 − 1.78𝐶 − 0.10𝐷)𝑀 + (−10.92 + 4.50𝐵 − 4.23𝐷)𝑍, 

log(𝜙𝑖�̂�) = 4.25 − 0.73𝐵 − 0.92𝐶. 
(19) 

Nair (1992) demonstrated that when the 𝑦𝑖𝑗𝑘  error structure is normally 

distributed, the dispersion parameter model follows a gamma distribution with 

log(𝜇) of the link function. Therefore, log(𝜇) is used as the link function in the 

dispersion parameter model, which assumes a gamma distribution. Our analysis 

uses the mean square error calculated using leave-one-out cross-validation. 

Because control factor 𝐴 was not selected, setting the level is unnecessary. 

In the population mean model, the control factors 𝐵 and 𝐷 interact with the noise 

factors and the control factors 𝐵 and 𝐶 are selected in the dispersion parameter 

model. Therefore, a tradeoff occurs because the control factors decrease the 

variation while simultaneously adjusting to the target function. 
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We derive 𝜙, 𝑉(𝜇), and canonical link functions in the normal distribution. The 

normal distribution 𝑁(𝜇, 𝜎2)  can be transformed following Myers and 

Montgomery (1997) to obtain the following equation: 

𝑓(𝑦; 𝜇) = exp {
𝑦𝜇 − 𝜇2 2⁄

𝜎2
−

1

2
(𝑦2 𝜎2⁄ + log(2𝜋𝜎2))}. (20) 

Hence, in the normal distribution,  𝜃 = 𝜇 ,  ℎ(𝜙) = 𝜎2 , and 𝑉(𝜇) = 1 . The 

canonical link function is 𝜇. 

Second, we derive the process mean 𝐸𝐳(𝜇𝑖𝑗𝑘). Considering that the link function 

is 𝜇 and 𝑞′′[𝜂0] = 0, we can derive the following equation: 

𝐸𝐳(𝜇𝑖𝑗𝑘) ≈ 𝑞[𝜂0] +
1

2
𝑞′′[𝜂0]𝑉𝑎𝑟𝐳(𝜂) 

= 𝑞[𝜂0] . 

(21) 

When the population mean model of Equation (19) is substituted, the estimation 

model of the process mean is given as: 

�̂�𝐳(𝜇𝑖𝑗𝑘) ≈ (7.42 − 1.78𝐶 − 0.10𝐷)𝑀. (22) 

Third, the process variance, 𝑉𝑎𝑟(𝑦𝑖𝑗𝑘), is derived. Notably, Ψ = 1 because we use 

the established link functions and 𝑉(𝜇) = 1 because we use normal distributions. 

Therefore, the following equation is derived: 

𝑉𝑎𝑟(𝑦𝑖𝑗𝑘) ≈ (𝛄 + 𝐱𝑖
𝑇𝜦 + 𝐦𝑘

𝑇𝛀)𝑉𝑎𝑟𝐳(𝐳𝑗)(𝛄 + 𝐱𝑖
𝑇𝚲 + 𝐦𝑘

𝑇𝛀)𝑇 + 𝜙𝑖𝑘. (23) 

When the population mean model and dispersion parameter model of Equation 

(19) are substituted, the estimation model of the process variance is given as: 

𝑉𝑎�̂�(𝑦𝑖𝑗𝑘) = (−10.92 + 4.50𝐵 − 4.23𝐷)2𝜎𝐳
2 + exp(4.25 − 0.73𝐵

− 0.92𝐶). 
(24) 

Fourth, we define the evaluation function that requires parameters that are 

arbitrarily determined by the designer based on the purpose and state of the 

process. The setting used for this analysis is as follows: 

𝑡 = 1.0𝑀, 

𝑀 = (4.0,6.0,8.0,10.0,12.0), 

𝜎𝐳
2 = 1.0, 

(25) 

where 𝑡 denotes the target function, 𝑀 denotes the standard set of signal factors, 

and 𝜎𝐳
2 denotes the variance of the noise factors. Because an appropriate target 

function was unknown in the original experiment (Enkawa and Miyakawa, 1992), 

we define a new one. We define each evaluation function based on the setting and 

optimize in the range of −1 ≤ 𝑥 ≤ 1 for each evaluation function. The equation 

for the evaluation function is omitted. 

The details of each design solution are listed in Table 2. 𝑆𝑆𝐸 is the evaluation 

function with the normal RSM approach when the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸  is fixed at 
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𝜅 = 1. The 𝑆𝑆𝐸 is minimized using the quasi-Newton method. 

As presented in Table 2, the design solution using the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 is consistent 

with the conclusions of Enkawa and Miyakawa (1992). The first term of the 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸  is diminutive owing to the adjustment parameter. Therefore, we 

calculate and compare the first term of the 𝑆𝑆𝐸 using the design solution of the 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸. It can be observed that the 𝑆𝑆𝐸 is smaller, indicating that it derives 

the design parameters by drawing the process mean closer to the target function. 

Moreover, because the adjustment parameter is 0.17, the target function is less than 

the estimated process model. The second term allows for a simple comparison 

because no adjustment exists in either evaluation function. By comparing the 

values of the second term, it is evident that the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 derives solutions 

that have a more attenuated process variation than the 𝑆𝑆𝐸. 

Table 2 – Details of design solution 

Method 𝑩 𝑪 𝑫 First term Second term Evaluation value 

𝑆𝑆𝐸, 𝜅 = 1.00 1.00  1.00  0.26  7678.31 348.66  8026.97 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸, 𝜅 = 0.17 

(calculated 𝑆𝑆𝐸 value) 
1.00 1.00 −1.00 

0.05 

(8083.38) 
91.28 

91.33 

(8174.66) 

Next, we visually evaluate the quality of each design solution. We show the 

relation plot between the level of the signal factor and the response in the obtained 

design solution in iigure 1. The vertical axis of the graph shows the response 𝑦 

and the horizontal axis shows the level of signal factor 𝑀. The target function t is 

indicated by a solid line; the process mean 𝐸𝑧(𝜇𝑖𝑗𝑘) is indicated by a dotted line, 

and the population mean 𝜇𝑖𝑗𝑘 of the response at each level of the noise factor 𝑍 is 

indicated by four white points. iurthermore, the level of the signal factor 𝑀  is 

plotted in 1.0 increments 4.0 of 12.0. The noise factor 𝑍  has four 

levels (−1.0, −0.5, 0.5, 1.0). 

As illustrated in Figure 1, the solution designed using 𝑆𝑆𝐸 gets closer to the target 

function by increasing the process variation. Conversely, the solution designed 

using 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 decreases the process variation while drawing the process 

mean sufficiently closer to the target function. 

 

Figure 1 – Relation plots between signal factor levels and responses in each 

design solution 
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5 VERIFICATION BY SIMULATION 

5.1 Simulation settings 

This section describes the simulations performed to verify 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸. The 

differences and variations between the ideal and design solutions in the simulation 

model are verified as evaluation criteria to clarify whether our solution is robust. 

We set the simulation model for response 𝑦, as follows: 

𝑦 = 𝜀, 

log(𝜇) = 𝜂 

= 1.5 + 0.5𝐵 + (0.25𝐴 + 0.5𝐵)𝑀 + (1.0𝐴 + 1.0𝐶 + 1.0𝐷)𝑍. 

(26) 

The error 𝜀 follows a Poisson distribution 𝑃(𝜆) and 𝜆 = 𝜇. Hence, this simulation 

does not conform to the typical dynamic RPD assumption. The conditional mean 

and variance are expressed as  

𝐸(𝑦𝑖𝑗𝑘|𝐱𝑖 , 𝐳𝑗 , 𝐦𝑘) = 𝜇𝑖𝑗𝑘 , (27) 

𝑉𝑎𝑟(𝑦𝑖𝑗𝑘|𝐱𝑖 , 𝐳𝑗 , 𝐦𝑘) = 𝜇𝑖𝑗𝑘 . (28) 

Moreover, our simulation does not assume over- or under-dispersion. Therefore, 

we use the GLM to estimate the RSM. 

The solution (𝐴, 𝐵, 𝐶, 𝐷) = (1.0, 1.0, −0.5, −0.5) is considered ideal because it 

maximizes the intercept and slope while nullifying the effect of the noise factor. 

However, extrapolated solutions are not assumed. Substituting the ideal solution 

into Equation (26) yields the following:  

log(𝜇) = 2.0 + 0.75𝑀. (29) 

Therefore, we set the target function 𝑡 as in 

log(𝑡) = 2.0 + 1.0𝑀. (30) 

The slope of this target function exceeds that in Equation (29). If the design 

solution increases the process variation, the process mean can be brought closer to 

the target function. However, this design solution is not robust. Therefore, in this 

simulation, the average of the design solutions is close to (𝐴, 𝐵, 𝐶, 𝐷) =
(1.0, 1.0, −0.5, −0.5); the smaller the variance in the design solutions, the better 

the solution. 

In the framework in GLM, where neither overdispersion nor underdispersion is 

assumed, the Poisson distribution 𝑃(𝜇) can be transformed following Myers and 

Montgomery (1997) to obtain the following equation: 

𝑓(𝑦𝑖𝑗𝑘; 𝜇𝑖𝑗𝑘) = exp{𝑦𝑖𝑗𝑘log(𝜇𝑖𝑗𝑘) − 𝜇𝑖𝑗𝑘 − log(𝑦𝑖𝑗𝑘!)}. (31) 

Hence, in the Poisson distribution,  𝜃 = log(𝜇) ,  ℎ(𝜙) = 1  and 𝑉(𝜇) = 𝜇 . The 

canonical link function is the log(𝜇). 
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First, we derive the process mean 𝐸𝐳(𝜇𝑖𝑗𝑘). Considering that we use a logarithmic 

link function, 𝑞′′[𝜂0] = 𝑒𝜂0 and 𝐸𝐳(𝜇𝑖𝑗𝑘) can be derived as follows: 

𝐸𝐳(𝜇𝑖𝑗𝑘) ≈ 𝑞[𝜂0] +
1

2
𝑞′′[𝜂0]𝑉𝑎𝑟𝐳(𝜂) 

= 𝑒𝜂0 {1 +
1

2
(𝛄 + 𝐱𝑖

𝑇𝚲 + 𝐦𝑘
𝑇𝛀)𝑉𝑎𝑟𝐳(𝐳𝑗)(𝛄 + 𝐱𝑖

𝑇𝚲 + 𝐦𝑘
𝑇𝛀)𝑇 }. 

(32) 

Second, we derive the process variance, 𝑉𝑎𝑟(𝑦𝑖𝑗𝑘). The established link function 

is log(𝜇) ;hence, Ψ = 1 . Considering that 𝑉(𝜇𝑖𝑗𝑘) = 𝜇𝑖𝑗𝑘  and 𝜙𝑖𝑘 = 1  in the 

Poisson distribution, the process variance 𝑉𝑎𝑟(𝑦𝑖𝑗𝑘) is given by 

𝑉𝑎𝑟(𝑦𝑖𝑗𝑘) ≈ 𝑒2𝜂0(𝛄 + 𝐱𝑖
𝑇𝚲 + 𝐦𝑘

𝑇𝛀)𝑉𝑎𝑟𝐳(𝐳𝑗)(𝛄 + 𝐱𝑖
𝑇𝚲 + 𝐦𝑘

𝑇𝛀)𝑇 

+𝑒𝜂0 {1 +
1

2
(𝛄 + 𝐱𝑖

𝑇𝚲 + 𝐦𝑘
𝑇𝛀)𝑉𝑎𝑟𝐳(𝐳𝑗)(𝛄 + 𝐱𝑖

𝑇𝚲 + 𝐦𝑘
𝑇𝛀)𝑇 }. 

(33) 

Each parameter used for the design is given in the following equation: 

𝑀 = (1.0,1.5,2.0,2.5,3.0), 

𝜎𝐳
2 = 1.0. 

(34) 

The equation of the evaluation function is omitted. 

The data used for the simulation were generated using the orthogonal array 𝐿16. 

Factors 𝐴, 𝐵, 𝐶, and 𝐷 are assigned to 1st, 2nd, 4th, and 8th columns, respectively. 

The noise factor 𝑍 and signal factor 𝑀 are arranged in a one-by-one outer array. 

The first level of the noise factor is 1, while the second is -1. The first, second, and 

third levels of the signal factor are 1, 2, and 3, respectively. The number of 

simulations is 10,000. In the real data analysis, the 𝑆𝑆𝐸 —a normal RSM 

approach—is also used for comparison. 

5.2 Simulation results 

Figure 2 shows the simulation results. The red cross symbol in the box plot 

represents the ideal solution level, and the blue point is the average of each design 

solution. 

As indicated in Figure 2, the control factors 𝐴 and 𝐵  optimized using 𝑆𝑆𝐸  are 

closer to the ideal solution, whereas the control factors 𝐶 and 𝐷 are significantly 

far from the ideal solution. In the simulation model, the design solutions other than 

𝐵 are related to the noise factor. These results imply that the process variation 

increases. Therefore, it can be inferred that the process mean can approach the 

target function by increasing the process variation without decreasing the influence 

of the noise factor. 

Conversely, the control factor optimized using the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 is very close to 

the ideal solution, and the variability of all control factors is diminutive, indicating 

that the variation is reduced while achieving appropriate input-output relations. 
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Based on the above, in the simulation of a realistic system, the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 can 

obtain a more robust stable design solution against changes in the noise factor and 

draw the process mean closer to the target function than the 𝑆𝑆𝐸. 

 

Figure 2 – Boxplot of each design solution derived in simulation 

6 CONCLUSION AND FUTURE ISSUES 

The dynamic RPD is indispensable for evaluating the robustness of the input-

output relation. However, realistic systems often deviate from typical dynamic 

RPD assumptions. Therefore, this study proposed a novel approach to RPD using 

RSM based on GLM for dynamic systems based on the method proposed by Myers 

et al. (2005). Additionally, we demonstrated the effectiveness of our method using 

dynamic experimental data and simulations. 

The actual data analysis reveals that a system design using 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 is found 

to derive a more robust design solution against the fluctuation of the noise factor 

than the one using 𝑆𝑆𝐸. Moreover, the target function could be evaluated using the 

adjustment parameter. In the simulation, when the system design using 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝐸 sets a free target function, we could derive a design solution close 

to the assumed ideal solution. This enables the designer to freely set the target 

function, design the system with various backgrounds, and subsequently evaluate 

it. 

Future research should analyze the factor(s) in the estimate process model that 

significantly contributes to the adjustment parameter’s variation. We propose 

introducing the contribution rate as an index to identify these factors. Thus, 

significant improvements are expected in the process adjustments. 
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