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ABSTRACT 

Purpose: This study seeks to optimise key production parameters for biomass 

pellets by employing Lean Six Sigma (LSS) alongside dynamic system simulation. 

Emphasis is placed on fine-tuning moisture content, durability, and pellet diameter 

to meet international quality standards and performance operational. 

Methodology/Approach: The research integrates DMAIC methodology with 

dynamic simulation modelling, analysing and optimising drum speed, material 

feed rate, and drying temperature via factorial design and system dynamics. 

Findings: Implementing LSS markedly reduced moisture variability, hitting a 

stable mean of 9.446% and cutting defects down to 59,000 PPM. Durability saw a 

notable lift from 91.976% to 95.896%, with defects slashed by 80%. Pellet 

diameter was fine-tuned from 7.241 mm to 7.051 mm, bringing defects down to 

45,000 PPM. Taken together, these results tick all the boxes for international 

standards and show considerable gains in process performance. 

Research Limitation/Implication: The study is limited to one biomass site, 

focusing on key quality parameters. Future research could assess scalability and 

suitability across other renewable energy sectors. 

Originality/Value of paper: This research highlights the novel integration of 

Lean Six Sigma and dynamic simulation in biomass pellet production, providing a 

robust framework for quality and operational stability in energy. 

Category: Research paper 

Keywords: lean six sigma; system dynamics simulation; defect reduction; 

biomass quality control 

Research Areas: Quality Engineering, Quality Management  
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1 INTRODUCTION  

In recent years, companies have placed operational efficiency, cost-cutting, and 

overall performance at the top of their agenda, driving uptake of methods like 

Green Lean and Six Sigma. In this vein, Gholami et al. (2021) devised a Green 

Lean Six Sigma approach for cleaner production using the DMAIC (Define, 

Measure, Analyse, Improve, Control) framework, one of Six Sigma's flagship 

methods, achieving tangible results with chemical and energy consumption 

dropping by 28% and 21%, respectively. Echoing this,  r et al. (2014) affirm 

that Six Sigma offers a systematic, statistically robust route to enhancing product 

quality, innovation, and customer satisfaction. Similarly, Deeb et al. (2018) 

underline the need to scrutinise DMAIC outcomes phase-by-phase with SME-

tailored checklists to keep management on track. Lastly, Tenera and Pinto (2014) 

illustrate how fusing DMAIC with project management pinpoints key problems, 

sets out clear improvement actions—such as the 24 steps they advocate—and 

ensures lasting operational benefits. 

The Six Sigma (SS) methodology has found traction across diverse fields, 

delivering impressive process enhancements. In clinical chemistry, it has proven 

its mettle by optimising assays to five- and six-sigma quality standards. Ren et al. 

(2023), for instance, documented a notable leap of 46.8% in process cycle 

efficiency (PCE) after embracing Kaizen’s continuous improvement approach. 

Additionally, their study reported a 27.9% drop-in turnaround time, a 59.3% uptick 

in value-added activities, and a hefty 71.9% cut in non-value-added tasks after 

rolling out Lean Six Sigma (LSS). Likewise, Liu (2006) effectively employed SS 

to sharpen internal quality control (IQC) for biochemical assays, slashing cycle 

times and clocking up total savings of 76.6% (42,239 hours). In a similar vein, 

Ahmed et al. (2021) harnessed Six Sigma in clinical labs to pinpoint, rectify, and 

monitor errors, especially under critical circumstances like the COVID-19 

pandemic, achieving a defect rate drop from 0–0.27% pre-pandemic to 0–0.13% 

during the pandemic. 

Six Sigma has played a pivotal role in cutting down delays in lung cancer 

diagnoses by pinpointing key issues such as skipped regular check-ups, patient 

anxiety, and general reluctance to seek timely medical attention (Çelik et al., 

2016). Further, Al-Zuheri et al. (2021) underline how this methodology enables 

thorough phase-by-phase result evaluations, bolstering organisational efficiency. 

They also stress using tailored checklists suited to SMEs, giving managers a leg-

up in enhancing both organisational effectiveness and patient safety. 

In manufacturing, Jitsamruay et al. (2023) fine-tuned medium-density fibreboard 

(MDF) production, chiefly by trimming variability in internal bonding (IB). Using 

a 25-2 factorial experiment (Resolution III), they pinpointed optimal settings for 

glue, heat, and pressure, directly affecting the IB of the finished product. Their 

results showed that targeted tweaks to glue, heat1, and PrimCirIn could hit an 

optimal IB of 0.7, or even reach 1.27, depending on production aims. Meanwhile, 

Antosz et al. (2022) leveraged Six Sigma to smarten up sustainable maintenance, 
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boosting machine uptime and ironing out process hiccups. Likewise, Bloj et al. 

(2020) demonstrated how systematically applying Six Sigma—spotting core 

issues, tightening procedures, and chasing clear goals—catapulted a firm's update 

rate from 2.6% to 20% in just three months, comfortably beating their 10% target, 

chiefly through sprucing up internal processes and sharpening customer service. 

Daniyan et al. (2022) illustrate how Six Sigma effectively tackles issues tied to 

sluggish productivity and efficiency through methods such as Kaizen and work 

standardisation. Their study bumped process cycle efficiency (PCE) up from 

19.9% to 66.7%, a sizeable improvement of 46.8%, specifically in bogie car 

assembly. Consequently, lead time fell dramatically from 623,519.97 minutes to 

449,280 minutes—a tidy 27.9% reduction—while value-added time rose 

significantly from 125,828.8 to 309,600 minutes, reflecting a 59.3% boost. 

Likewise, Altuğ (2023) applied Six Sigma within a screw-and-nut manufacturing 

firm, successfully cutting annual costs by roughly $21,780 and saving an 

additional $30,000 in losses by sorting out coating defects. Ultimately, coating 

thickness efficiency climbed impressively from 85% to 95%, hitting close to the 

sweet spot of 95%–97%. 

In the iron ore industry, robust process capability is vital for keeping operations 

ticking over. Indrawati and Ridwansyah (2015) employed DMAIC to tackle 

operational issues head-on, redesigning duct dust collectors, standardising 

procedures, introducing vibrometers, and installing a nitrogen plant. Their study 

revealed a quality performance of 2.97 sigma, pinpointing 33.67% of activities as 

non-value-added, with a further 14.2% deemed unnecessary. Similarly, 

Nithyanandam and Pezhinkattil (2014) harnessed Six Sigma in precision 

machining of aerospace-grade 6061 aluminium, using two-way ANOVA to nail 

down key variability factors. They found optimal machining stability with spindle 

speeds set at 6000 RPM and feed rates at 3.4 mm/sec. 

In innovation circles, blending Six Sigma with Lean Manufacturing has become 

standard practice, especially when fused with Industry 4.0 and circular economy 

concepts, proven to sharpen processes and enhance sustainability (Skalli et al., 

2022). Similarly, Six Sigma has found its niche in modern manufacturing—

particularly additive manufacturing (AM)—to nail process optimisation and get 

products right first-time round (Sithole et al., 2021). Moreover, Byrne et al. (2021) 

adopted a tailored Lean Six Sigma (LSS) approach in a pharmaceutical plant 

making acetaminophen tablets, grappling with delivery lags due to heightened 

demand amid the COVID-19 pandemic. Using a targeted seven-step strategy, they 

stripped out waste and tightened procedures, achieving impressive gains: an 84% 

cut in packaging backlog, 8.3% shorter batch cycles, 25% faster line changeovers, 

an 11% uptick in line availability, factory delivery times slashed by 69%, and 

value-added time boosted by 14%. 

Lean Six Sigma (LSS) has gained traction globally, though its use in niche areas 

like biomass manufacturing remains thin on the ground. This gap underscores a 

clear need for further inquiry into its status and untapped opportunities within this 
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field. Addressing this, the present study employs the classic DMAIC framework 

(Define, Measure, Analyse, Improve, Control), targeting waste reduction and 

incorporating an innovative dynamic simulation approach. The research homes in 

on improving productivity, moisture consistency, durability, and pellet diameter, 

demonstrating how a structured LSS application can significantly boost 

operational performance. 

2 METHODOLOGY 

The biomass firm faced quality snags in pellet production, stemming from poor 

control of moisture, diameter, and durability, which knocked customer satisfaction 

and put the company on the back foot. Its primary client, a government body using 

the pellets to fire boilers, insisted on strict adherence to the U.S. Pellet Fuel 

Institute (PFI) standard. 

2.1 Methodological strategy  

The study follows the DMAIC methodology (Figure 1), kicking off with the 

Define phase and weaving in dynamic simulation modelling. At this stage, 

customer requirements and expectations were mapped out clearly, setting the scene 

for biomass standards, assessing process performance, and gauging its predictive 

capability. 

 

Figure 1 – Structured process flow of the DMAIC approach in Lean Six Sigma 

applications 
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Customer needs were pinpointed and tracked using the "Voice of the Customer" 

(VoC) approach, establishing Critical-to-Quality (CTQ) parameters to steer the 

project's aims. A dedicated team then set up a formal project plan, complete with 

timeline and budget. Statistical methods were deployed during the measurement 

phase to assess CTQ parameters, constructing a detailed process map pinpointing 

key inputs (labelled X1, X2, X3, ... Xn) affecting quality. To ensure data was on the 

mark, a robust collection plan incorporating Measurement System Analysis (MSA) 

was developed, culminating in a solid baseline for performance and capability. 

In the analysis phase, the team sifted through data on previously measured process 

variables, aiming to nail down root causes and validate their impact on critical 

quality outcomes. During the improvement stage, potential enhancements were 

spotted and ranked, with redesign initiatives implemented and validated via 

experimental design. Finally, the control phase cemented long-term gains by 

rolling out standardised processes, employee training, and ongoing monitoring 

through control charts and statistical techniques. The next section dives deeper into 

these stages. 

3 RESULTS 

3.1 Define phase 

The company supplies its wood-waste pellets in 15 kg packs, with 60% of output 

heading to a government client demanding rigorous compliance with PFI 

standards—moisture content spot-on, pellet diameter within 6–7 mm, durability 

no less than 95%, and length under 38 mm. The manufacturing runs from raw-

material intake through to storage. Data revealed 85% of customer gripes were 

down to excess moisture, inconsistent diameters, and insufficient durability. 

Meeting international standards (as summarised in Table 1) is thus crucial. The 

research team pinpointed critical process variables—including conveyor belt speed 

and drying temperature—that significantly influenced moisture content, pellet 

diameter, and mechanical robustness. 

Table 1 – Benchmark standards for biomass pellet quality parameters  

Standard 

Moisture 

Content  

(%) 

Ash Content  

(%) 

Bulk 

Density 

(kg/m³) 

Heating 

Value 

(MJ/kg) 

Mechanical  

Durability (%) 

Diameter 

(mm) 

Length 

(mm) 

PFI 

(EE.UU.) 

≤ 10% 

(Premium), ≤ 

12% (Standard) 

≤ 1% 

(Premium), ≤ 

2% (Standard) 

≥ 640 ≥ 19 

≥ 96.5% 

(Premium), ≥ 

95% (Standard) 

6 a 8 ≤ 38 

CEN/TC 

335 

(Europa) 

≤ 10% (Clase 

A1 y A2), ≤ 

12% (Clase B) 

≤ 0.7% (A1), ≤ 

1.2% (A2), ≤ 

2% (B) 

600-750 
≥ 16.5 (4.6 

kWh/kg) 

≥ 97.5% (A1), 

≥ 96.5% (A2 y 

B) 

6 ± 1 o 8 ± 

1 
≤ 40 

ONORM  

(Austria) 
≤ 10% ≤ 0.5% ≥ 600 ≥ 18 ≥ 97.5% 6 a 8 ≤ 40 
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Standard 

Moisture 

Content  

(%) 

Ash Content  

(%) 

Bulk 

Density 

(kg/m³) 

Heating 

Value 

(MJ/kg) 

Mechanical  

Durability (%) 

Diameter 

(mm) 

Length 

(mm) 

Pellsam 

(Suecia) 
≤ 10% - - - - - - 

DIN 51731 

(Alemania) 
≤ 12% ≤ 0.5% ≥ 600 ≥ 18 ≥ 97.5% 6 a 8 ≤ 40 

SN 166000 

(Suiza) 
≤ 10% ≤ 0.7% ≥ 600 ≥ 17.5 ≥ 97.5% 6 a 8 ≤ 40 

3.2 Measure phase 

The biofuel manufacturing process kicks off with the intake and moisture 

inspection of wood-waste raw material, which is then stored. Depending on 

moisture levels, drying drum parameters are fine-tuned before loading the material 

into the drum. Post-drying, wood chips move to Silo No. 01 for another moisture 

check, then are chipped into sawdust and stored in Silo No. 02 after a further 

moisture inspection. The sawdust proceeds to pelletising, and after screening, 

pellets enter Silo No. 03 for final moisture and diameter checks ahead of 

packaging. Lastly, the pellets head off to the finished-goods warehouse. These 

steps are neatly summed up in Figure 2. 

 

Figure 2 – Systematic representation of the biomass pellet manufacturing 

workflow. 

Pellet moisture content was measured at ambient temperature in the packaging area 

using the PCE-WT1N meter, compliant with CEN/TC 335 and PFI standards. 

Mechanical durability was assessed via the Holmen NHP200 tester following EN 

15210-1. Pellet diameter was checked with Vernier calipers, also adhering to 

CEN/TC 335. Weekly production totalled 13,500 kg in 15 kg bags, with random 

sampling at 158 for moisture and diameter and 85 for durability, ensuring 

accuracy. Key statistics are summarised in Table 2. Moisture (mean: 9.715%) and 
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durability (mean: 91.976%) followed a normal distribution, showing minimal 

variability (CV: 8.5% and 3.6%). 

Table 2 – Statistical distribution characteristics of moisture, durability, and 

diameter variables  

 Moisture  

Percentage (%) 

Durability  

(%) 

Diameter  

(mm) 

Sample Size 158 50 158 

Mean 9.715 91.976 7.241 

Standard Deviation 0.830 3.341 0.745 

Minimum 7.950 84.999 6.020 

25th Percentile 9.133 89.492 6.603 

Median 9.700 92.363 7.160 

75th Percentile 10.258 94.680 7.933 

Maximum 11.900 99.854 8.460 

p-value for 

normality 

0.198 0.7505 0.000 

 

The data for wood pellets clearly indicates substantial shortcomings in quality 

control, notably concerning moisture and durability. Moisture content—set 

between 9% and 10%, targeting 9.7%—demonstrated poor capability (Pp=0.2), 

well below par, suggesting the process often drifted outside specified limits. 

Durability was even more problematic, registering a shocking 8,413,605.75 PPM 

beyond acceptable standards, with a negative Ppk (-0.25) reflecting serious control 

issues. Conversely, pellet diameter fared slightly better (Ppk=0.61), yet still 

showed considerable room for improvement, with 221,518.99 PPM falling short 

of the required 6–8 mm specification. A Johnson transformation was applied for 

diameter, whereas moisture and durability were analysed assuming normality. 

Table 3 – Process capability index summary for critical quality parameters in 

measurement phase 

Description Moisture  

percentage (%) 

Durability  

(%) 

Diameter 

(mm) 

LSL (Lower 

Specification Limit) 

9 94.5 6 

Target 9.7 96 7 

USL (Upper 

Specification Limit) 

10 97 8 

Sample Mean 9.715 91.976 7.241 

Sample Size 158 50 158 

Std. Dev. (Long 

term) 

0.830 3.341 0.745 
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Description Moisture  

percentage (%) 

Durability  

(%) 

Diameter 

(mm) 

Std. Dev. (Short 

term) 

0.80318 3.66234 - 

Observed 

Performance (Long 

term) 

151898.73 7400000 0 

Expected 

Performance (Long 

term) 

194368.22 775308.03 0 

Expected 

Performance (Short 

term) 

186162.8 754686.81 0 

PPM < LSL 500000 600000 221518 

PPM > USL 560077.59 6322.71 214735 

Total PPM 548056.3 841360.75 221518 

Capability (Pp) 0.2 0 0 

Capability (PPL) 0.29 0 0 

Capability (PPU) 0.11 0 0 

Capability (Ppk) 0.11 -0.25 0.61 

 

Control of moisture percentage was found to be steady, as depicted in Figure 3, 

with all points comfortably within the control limits (UCL=12.125, LCL=7.306). 

No irregularities cropped up, nor did any worrying patterns emerge, settling around 

a mean of 9.715 and a well-behaved moving range. 

 

Figure 3 – Statistical control charts for critical quality attributes during 

measurement phase.  

The durability analysis likewise revealed a stable process, comfortably within 

control limits (UCL=102.96, LCL=80.99), centring around a mean of 91.975. No 

points wandered out of control, and fluctuations fell within the realm of natural 

variation, despite some notable wobble in the moving range. Similarly, the 

diameter proved consistently stable, averaging 7.241 mm, neatly contained 

between the established control limits (UCL=9.539, LCL=4.942). A low moving 

range averaging 0.864 reinforced the impression of a tightly controlled process. 



QUALITY INNOVATION PROSPERITY  29/1 – 2025  

 

ISSN 1338-984X (online) 

67 

3.3 Analyse phase 

The phase kicked off with the research team gathering to pinpoint likely culprits 

behind variations in critical quality characteristics and to suss out reasons for the 

previously noted lack of capability. Employing the 6M methodology, an Ishikawa 

diagram (Figure 4) was drafted to neatly capture variables affecting moisture 

content. The same approach was rolled out for other parameters, offering clarity 

on the sources of variability. 

 

Figure 4 – Pareto analysis of predominant causes contributing to moisture 

variability 

Ten variables (X) potentially impacting moisture content were flagged up, with the 

key players selected using a Pareto chart (see Table 4). Consequently, nine root 

causes surfaced, warranting a deeper look to fully grasp their knock-on effects. 

Table 4 – Pareto analysis of predominant causes contributing to moisture 

variability 

N° Cause Percentage Accumulated percentage 

1 Drying speed 10 10 

2 Raw material feeder belt speed. 10 20 

3 Speed of entry of raw material to the 

pellet mill 

10 30 

4 Raw material moisture control 10 40 

5 Inventory management 9 49 

6 Storage method 8 57 

7 Excess moisture in the raw material 8 65 

8 Inadequate raw material 8 73 

9 Drying temperature 4 77 
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Variables suitable for parametrisation within the pelletising kit were picked out, 

with five key factors scrutinised: raw material moisture percentage (X1), conveyor 

belt speed (X2), dryer drum speed (X3), drum temperature (X4), and material input 

speed (X5), all bearing directly upon moisture content (see Table 5). 

Table 5 – Process variables assessment for moisture content control in pellet 

manufacturing 

Batch Raw 

material 

moisture 

percentage 

- % 

Conveyor 

belt 

speed - 

rpm 

Dryer drum 

speed - rpm 

Drum 

temperature - 

°C 

Material 

entry speed - 

rpm 

 

Average 

moisture 

percentage 

 (X1) (X2) (X3) (X4) (X5) (Y1) 

1 40 28.45 19.46 120 14.25 10.51 

2 46 25.56 18.06 115 10 10.64 

3 37 28.45 19.46 130 12.89 10.59 

4 25 34.54 22.07 140 16.46 10.16 

5 19 36.02 24.26 150 18.5 9.94 

6 32 31.27 20.85 125 15.75 10.37 

 

Correlations with ρ values ranging from 0.68 to 0.90 were assessed to size up the 

statistical links between the variables and the critical quality characteristic (see 

Figure 5). This analysis proved useful in pinpointing and ranking the key 

ingredients shaping product quality. 

 

Figure 5 – Correlation heat map of process parameters with critical quality 

characteristics 
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In the same vein, correlations among the remaining variables were worked out. 

Building on these results, multiple linear regression models were knocked together 

for the three quality variables, as set out in Table 6. 

Table 6 – Statistical modelling equations for process parameter optimization  

Equation R2 MSE 

Average moisture percentage = 10.2541 + - 0.2009 * p moisture rm - 0.4949 * 

conveyor belt s - 0.1251 * dryer drum s - 0.0025 * drum t + 0.0988 * material entry 

speed 

(1) 

0.650 0.0071 

Durability (%) = 56.11 - 0.1643* moisture percentage raw material + 0.9991* 

dryer drum speed 

(2) 

0.758 0.3589 

Diameter (mm) = 3.4011 + 0.001073 drum temperature + 0.24959 *  material 

input speed          

 (3) 

0.663 0.0034 

Raw material moisture (X1), conveyor belt speed (X2), dryer drum speed (X3), 

pelletiser sawdust feed rate (X4), and internal drum temperature (X5) emerged as 

the critical process parameters pulling the strings for the three variables discussed 

in the earlier models. 

3.4 Improve phase 

3.4.1 Improvement of moisture percentage 

In the improvement phase, changes were proposed to mitigate the effects resulting 

from the previously identified causes related to biomass moisture. 

Implementation of a 2⁴ factorial design. 

For the improvement, a 2⁴ factorial design was conducted with four factors, each 

at two levels, and two runs were performed for each combination. The levels were 

based on the company’s production standards and the equipment available. Table 

7 organizes the information to identify the factor levels. 

Table 7 – Factorial design configuration for parameter evaluation in moisture 

control  

Typing  Key process parameter Low level High level 

A Raw material moisture 

percentage (X1) 

19% (-1) 40% (+1) 

B Speed of the raw material 

feeding conveyor belt (X2) 

28.45 rpm  (-1) 36.02 rpm  (+1) 

C Dryer drum speed (X3) 19.46 rpm  (-1) 24.26 rpm  (+1) 

D Material entry speed (X4) 8 rpm  (-1) 13.4 rpm  (+1) 
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In the development of the mathematical model, the previously established equation 

for a 2⁴ factorial design was considered, as presented below in equation 4. 

𝑌𝑖𝑗𝑘𝑙 =  𝜇 +  𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝛿𝑙 +  (𝛼𝛽)𝑖𝑗 + (𝛼𝛾)𝑖𝑘 + (𝛼𝛿)𝑖𝑙 + (𝛽𝛾)𝑗𝑘

+ (𝛽𝛿)𝑗𝑙 + (𝛾𝛿)𝑘𝑙 + (𝛼𝛽𝛾)𝑖𝑗𝑘 + (𝛼𝛽𝛿)𝑖𝑗𝑙 + (𝛼𝛾𝛿)𝑖𝑘𝑙

+ (𝛽𝛾𝛿)𝑗𝑘𝑙 + 𝐸𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙 

(4) 

An analysis of variance (ANOVA) was performed to weigh up the significance of 

experimental factors, initially yielding an R² of 69.08%. After trimming away non-

significant terms, the final model—focusing solely on the four key factors (A, B, 

C, D) for pellet production—was nailed down as shown in equation 5. 

𝑌𝑖𝑗𝑘𝑙 = 10.2131 + 0.4375 𝑋𝐴 + 0.75𝑋𝐵 + 0.7375𝑋𝐶 + 0.8375𝑋𝐷 (5) 

The parameters required to achieve a quality target of 9% moisture in the biomass 

were determined using Equation 2. Based on this, Table 8 was generated, showing 

the equipment parameters according to the moisture content of the raw material. 

X1 should range between 19% and 40%. The wood will be processed in five-ton 

batches. 

Table 8 – Parameters defined according to the quality target 

Raw material  

moisture percentage 

(X1) 

Speed of the raw 

material feeding 

conveyor belt (X2) 

Dryer drum 

speed  

(X3) 

Material 

entry speed  

(X4) 

Moisture 

percentage 

(Y1) 

19.0 – 20.0 31.48 21.38 12.05 9 

20.1 – 21.0 32.24 21.86 10.97 9 

21.0 – 22.1 31.48 21.38 11.78 9 

22.2 – 23.1 30.72 20.90 12.59 9 

23.2 – 24.2 31.48 21.38 11.51 9 

24.3 – 25.2 30.72 20.90 12.32 9 

25.3 – 26.3 30.34 22.10 11.24 9 

26.4 – 27.3 30.72 21.14 11.78 9 

27.4 – 28.4 31.48 21.62 10.70 9 

28.5 – 29.4 30.72 21.14 11.51 9 

29.5 – 30.5 29.96 20.66 12.32 9 

30.6 – 31.5 30.72 21.14 11.24 9 

31.6 – 32.6 29.96 20.66 12.05 9 

32.7 – 33.6 31.10 21.15 10.7 9 

33.7 – 34.7 30.34 20.66 11.51 9 

34.8 – 35.7 31.10 21.14 10.43 9 

35.8 – 36.8 30.34 20.66 11.24 9 

36.9 – 37.8 30.72 21.38 10.16 9 

37.9 – 38.9 30.34 20.66 10.97 9 
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Raw material  

moisture percentage 

(X1) 

Speed of the raw 

material feeding 

conveyor belt (X2) 

Dryer drum 

speed  

(X3) 

Material 

entry speed  

(X4) 

Moisture 

percentage 

(Y1) 

39.0 – 39.9 29.59 20.18 11.78 9 

40 30.34 20.90 10.43 9 

The material is accepted under the INEN 251 1977-02 standard, with a sampling 

quantity of 25 kg for every 30 tons. Sampling is performed in subgroups of three 

for testing. Materials are stored in a warehouse with a coding system that highlights 

the entry date. 

Finished product storage policy 

To optimize time within the organization, a coding system linked to the raw 

material was implemented, complemented by a storage policy based on the FIFO 

method for the final product. Storage spaces were organized using a colour scheme 

and the manufacturing date, facilitating both visual control and operational 

management. Product distribution was carried out in batches of 450 bags, each 

weighing 15 kilograms, minimizing moisture gain in the product. This was crucial, 

considering the city has an average annual relative humidity of 89%, with monthly 

fluctuations ranging between 87% and 91%. 

3.4.2. Improvement of mechanical durability variable 

The dynamic behaviour of biomass pellet durability was modelled as a function of 

two independent variables: raw material moisture and drum speed. The multiple 

regression equation underpinning this analysis is detailed in Table 7. 

𝐷(𝑡) = 56.11 − 0.1643 ⋅ 𝑀(𝑡) + 0.9991 ⋅ 𝐷(𝑡) (6) 

The system dynamics include two key relationships: the evolution of raw material 

moisture and drum speed. The moisture changes according to: 

𝑑𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒(𝑡)

𝑑𝑡
= −𝑘 ∗ 𝐷𝑟𝑢𝑚𝑆𝑝𝑒𝑒𝑑(𝑡) + 𝑏 (7) 

Where: 

𝑘: Drum efficiency constant. 

𝑏: Natural moisture gain/loss rate. 

Meanwhile, the drum speed is adjusted using a PI controller according to: 

 

𝑑𝐷𝑟𝑢𝑚𝑆𝑝𝑒𝑒𝑑(𝑡)

𝑑𝑡
= 𝐾𝑝 ∗ 𝑒(𝑡) ∗ +𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 (8) 

Where: 

𝐾𝑝: Proportional gain. 

𝐾𝑖: Integral gain. 
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The drum speed is dynamically adjusted through a proportional-integral (PI) 

controller based on the error between the current durability and the target: 

Data shows that 85% of complaints were related to excessive moisture content, 

variable diameters, and insufficient mechanical durability. It was determined that 

compliance with international standards, shown in Table 1, is necessary to meet 

customer needs. The research team identified key process. 

e(t) = TargetDurability −  Durability(t) (9) 

Here, 𝑒(𝑡) is the error defined as the difference between the target durability (96%) 

and the current durability. The system ensures that, regardless of initial conditions, 

durability converges towards the target. The dynamic representation of the control 

system is shown in Figure 6, illustrating the relationship between the variables. 

 

Figure 6 – Diagram of dynamic relationships representing the interaction 

between key variables affecting biomass 

Following the development of simulation models, results are presented in Figure 

7, illustrating the progression of biomass pellet durability across 25 scenarios with 

varying initial moisture and drum speed conditions. The 96% quality target was 

met in most cases, with curves stabilising around the target within 20 to 30 hours. 

This suggests the system responds promptly and effectively, even when faced with 

notable initial variations. 

 

Figure 7 – Dynamic system simulation for durability with 25 scenarios 
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Once initial oscillations settled, durability curves exhibited marked stability 

around the 96% target. Minor residual variations, deemed typical, likely stemmed 

from differences in initial conditions or slight imperfections in controller tuning. 

This behaviour underscores the robustness of the dynamic model and PI controller 

in steering the system towards the desired quality state across diverse initial 

scenarios. 

Sensitivity analysis and simulation across 25 scenarios pinpointed the optimal PI 

controller parameters for minimising deviations from the 96% target: proportional 

gain for drum temperature (𝐾𝑇𝑝) at 1.0, integral gain (𝐾𝑇𝑖) at 0.2, proportional 

gain for material input speed (𝐾𝑉𝑝) at 0.8, and integral gain (𝐾𝑉𝑖) at 0.2. The best 

scenario began with initial conditions of 135.93 °C for drum temperature and 23.88 

rpm for input speed, stabilising at 124.18 °C and 14.10 rpm, respectively, with an 

average deviation of 0.168% and a maximum of 2.51%. These parameters were 

configured into the equipment to safeguard the desired durability. 

3.4.3. Improvement of diameter variable 

The mathematical model used to estimate the diameter of biomass pellets is based 

on a multiple regression equation, describing the relationship between the diameter 

and two independent variables: the pelletizing drum temperature and the material 

input speed. The equation is: 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝑡) = 3.4011 + 0.001073 ∗ 𝐷𝑟𝑢𝑚𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑡)
+ 0.24959 ∗ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑒𝑒𝑑(𝑡) 

(10) 

 

To simulate the evolution of diameter over time, the independent variables drum 

temperature and material input speed were dynamically modelled using 

proportional-integral (PI) controllers. 

The drum temperature is dynamically adjusted to minimize the error: 

𝑑𝐷𝑟𝑢𝑚𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑡)

𝑑𝑡
= 𝐾𝑇𝑝 ∗ 𝑒(𝑡) + 𝐾𝑇𝑖 ∗ ∫ 𝑒(𝑡)𝑑𝑡 (11) 

Where: 

𝐾𝑇𝑝: Proportional gain of the PI controller for temperature. 

𝐾𝑇𝑖: Integral gain of the PI controller for temperature. 

Similarly, the input speed is adjusted as: 

𝑑𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑒𝑒𝑑(𝑡)

𝑑𝑡
= 𝐾𝑉𝑝 ∗ 𝑒(𝑡) + 𝐾𝑉𝑖 ∗ ∫ 𝑒(𝑡)𝑑𝑡 (12) 

Where: 

𝐾𝑉𝑝: Proportional gain of the PI controller for speed. 

𝐾𝑉𝑖: Integral gain of the PI controller for speed. 
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The diameter error 𝑒(𝑡) is a quantitative measure of the deviation between the 

current pellet diameter and the desired target. 

𝑒(𝑡) = 𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝑡) (13) 

Similarly, dynamic system simulation is used for the product diameter variable, as 

shown in Figure 8, with the aim of identifying the parameters that ensure 

compliance with the established quality standard. 

 

Figure 8 – Diagram of dynamic relationships representing the interaction 

between key variables affecting the diameter of biomass pellets 

The model was evaluated using Python, with simulation outcomes presented in 

Figure 9, depicting the evolution of pellet diameter over time across 25 scenarios, 

accounting for initial variations in drum temperature and material input speed. The 

system aimed to stabilise the diameter at 7 mm, aligning with the desired quality 

standard. Simulations revealed that all trajectories converged towards this target 

following an initial adjustment period, confirming the system’s capability to 

dynamically regulate variables and uphold quality standards. 

 

Figure 9 – Dynamic system simulation for diameter with 25 scenarios 

During the first 100 hours, the curves exhibit significant oscillations, with diameter 

values exceeding 9 mm or falling below 5 mm in some cases. These initial 

oscillations result from aggressive adjustments by the PI controller, which seeks 
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to quickly correct the error between the current diameter and the target. However, 

as time progresses, these oscillations are progressively dampened, demonstrating 

the controller's effectiveness in stabilizing the system. 

The average stabilization time is approximately 150 hours, though some scenarios 

achieve stability around 100 hours while others require more than 200 hours. This 

variation in stabilization times suggests that certain initial conditions or controller 

configurations may influence the speed of adjustment. Despite these differences, 

all trajectories converge toward the target, demonstrating the robustness of the 

model and the system's ability to adapt to diverse initial conditions. 

The analysis of scenarios for controlling pellet diameter revealed that the optimal 

PI controller parameters are: 𝐾𝑇𝑝=1.0, 𝐾𝑇𝑖=0.2, 𝐾𝑉𝑝=0.8, and 𝐾𝑉𝑖=0.2. The best 

scenario presented an initial drum temperature of 135.73 °C and an initial input 

speed of 19.68 rpm, reaching final values of 134.46 °C for temperature and 13.77 

rpm for speed. The average deviation from the 7 mm quality target was 0.112 mm, 

with a maximum deviation of 1.459 mm. These results demonstrated that the tuned 

PI controller was robust and effective, successfully stabilizing the pellet diameter 

at the desired quality standard, even under variable initial conditions. 

3.5 Control phase 

The control phase assesses the outcomes of implemented changes and ensures their 

long-term sustainability. In the factory, the sampling plan was revised in line with 

the NTE INEN 1 233:95 standard. Twenty-one samples are collected per 

production batch on a weekly basis, divided into two subgroups. Data is securely 

stored in the company’s database for subsequent analysis. The results are 

summarised in Table 9. 

Table 9 – Post-implementation capability analysis of key quality metrics 

Description Moisture  

percentage 

(%) 

Durability  

(%) 

Diameter 

(mm) 

LSL (Lower Specification Limit) 9 94.5 6 

Target 9.7 96 7 

USL (Upper Specification Limit) 10 97 8 

Sample Mean 9.446 95.896 7.051 

Sample Size 40 40 40 

Std. Dev. (Long term) 0.424 0.566 0.618 

Std. Dev. (Short term) 0.428 0.547 0.537 

Observed Performance (Long term) 200000 6856 25000 

Expected Performance (Long term) 241970.38 25647.60 75000 

Expected Performance (Short term) 246739.85 32504.02 100000 

PPM < LSL 125000 0 25249 
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Description Moisture  

percentage 

(%) 

Durability  

(%) 

Diameter 

(mm) 

PPM > USL 75000 50000 38556 

Total PPM 200000 50000 106628 

Capability (Pp) 0.39 0.74 0.54 

Capability (PPL) 0.35 0.82 0.57 

Capability (PPU) 0.44 0.65 0.51 

Capability (Ppk) 0.35 0.65 0.51 

 

The process capability analysis for moisture percentage shows a Ppk index of 0.52, 

indicating that the process is not fully centered or optimized relative to the 9.7% 

target. This suggests that a significant portion of production might be near the 

specification limits, although the sample mean of 9.446% reflects that the process 

consistently operates be-low the target. In terms of quality, the process's sigma 

level indicates high variability, generating approximately 59,000 PPM out of 

specification, primarily at the lower limit. How-ever, for the organization, no 

major changes are required due to the costs involved in in-creasing the sigma level. 

The process capability for durability shows a Pp index of 0.41, reflecting a process 

that is not centered on the 96% target. While the sample mean of 95.896% is 

relatively close to the target, the low capability indicates that the process is not 

robust enough to consistently maintain values within specification limits. This 

results in approximately 100,000 PPM out of specification, mostly for values 

below the target. The process for pellet diameter shows a Ppk index of 0.65, 

indicating better performance compared to the other variables, but still insufficient 

to ensure high process capability. With a sample mean of 7.051 mm, the process 

operates slightly above the 7 mm target.  

However, variability generates approximately 45,000 PPM out of specification, 

mostly due to values exceeding the upper limit. Additionally, control charts were 

applied to analyse the behaviour of key variables (see Figure 10). The moisture 

percentage control chart demonstrates a process under statistical control, with 

individual values fluctuating around the mean and staying within established 

control limits. Similarly, the moving ranges remain within their limits, indicating 

consistent variability between consecutive observations. 

The durability chart also reflects a process under statistical control, with individual 

values centred around the mean and within control limits. In the moving range 

chart, consecutive differences remain within the limits, confirming process 

stability and con-trolled variability between measurements. 
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Figure 10 – Control charts for the three quality variables in the final stage.  

Lastly, the I−MR chart for diameter reflects similar outcomes, with individual 

values consistently centred around the mean and within control limits. Likewise, 

the moving ranges display steady variability between consecutive observations, 

reaffirming the statistical stability of the process. These control charts confirm that 

all three variables exhibit controlled and predictable behaviour within the analysed 

system. 

4 DISCUSSION 

The implementation of Lean Six Sigma through the DMAIC methodology, 

coupled with dynamic systems simulation, led to notable improvements in process 

quality parameters. Moisture content decreased from an average of 9.715% to 

9.446%, significantly cutting defects to 59,000 ppm, though further refinement is 

needed to align fully with the 9.7% target. Durability improved markedly, rising 

from 91.976% to 95.896%, with waste reduced from 500,000 ppm to 100,000 

ppm—underscoring the effectiveness of control measures. Diameter was finely 

tuned, dropping from 7.241 mm to 7.051 mm, with defects reduced to 45,000 ppm. 

Dynamic systems simulation enabled the modelling and prediction of process 

behaviour, optimising modifications to stabilise key variables and reduce 

variability. This approach pinpointed specific improvement opportunities, 

minimising waste and ensuring adherence to quality standards. Full 

implementation led to a marked reduction in accumulated waste, recovering 

thousands of units and enhancing system efficiency. Its practical value lies in the 

potential to replicate this process across other settings, precisely parameterising 

variables to optimise product quality. These findings confirm that combining Lean 

Six Sigma with dynamic systems simulation offers a robust framework for driving 

continuous improvement and operational sustainability. In conclusion, limited 

research has addressed the enhancement of quality characteristics in plant-based 

biomass, positioning this study as a noteworthy contribution to the field. 

5 CONCLUSION 

The implementation of Lean Six Sigma markedly reduced waste across key 

process quality variables. Applying the DMAIC approach, moisture defects 
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dropped from 90,000 PPM to 59,000 PPM, durability defects from 500,000 PPM 

to 100,000 PPM, and diameter defects from 65,000 PPM to 45,000 PPM, yielding 

an overall improvement of over 450,000 PPM across the system. 

Dynamic systems simulation enabled precise prediction and adjustment of critical 

parameters. By fine-tuning drum speed and raw material moisture, durability was 

stabilised at 95.896%, achieving an 80% reduction in related defects. This data-

driven approach ensured optimal alignment with quality standards. 

Beyond enhancing quality, the DMAIC methodology promoted efficient resource 

use. Reducing defects and waste led to the annual recovery of thousands of units, 

boosting profitability and lessening the environmental impact of out-of-

specification products.  
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