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ABSTRACT 

Purpose: The paper centres on process capability and its relation to data  
contamination. Process capability may be distorted due to imprecise data. The 
paper analyses to what extent capability changes reflect problems in data so that 
the changes can be attributed to data sampling rather than the true performance of 
the process. This is important because it is usually much simpler to increase the 
precision of data sampling than the process itself.  

Methodology/Approach: The paper has two major parts. In part one, effect of 
data contamination on the observed process characteristic is analysed. The effect 
is analysed using data obtained from simulated random drawings and the chi-
squared test. In the other part, reaction of capability to data contamination is 
observed. The capability is measured by a univariate capability index. 

Findings: Regarding the sensitivity of the index to contamination, it is different 
depending on the capability before the contamination. This leads to conclusions 
about when the company using the index should focus more on the way the data 
is measured, and when it should focus more on improving the process in 
question. The analysis shows that if the company is used to high levels of 
capability and records its drop, it is worth analysing its measurement system first, 
as the index is at higher levels more sensitive to data contamination.  

Research Limitation/implication: The study concerns a single univariate index, 
and the contamination is modelled with only several probability distributions.   

Originality/Value of paper: The findings are not difficult to detect, but are not 
known in practice where companies do not realize that problems with their 
process capability may sometimes lie in the data they use and not in the process 
itself. 

Category: Research paper 

Keywords: capability index; data contamination; index sensitivity 



QUALITY INNOVATION PROSPERITY / KVALITA INOVÁCIA PROSPERITA  21/3 – 2017  

 

ISSN 1335-1745 (print)    ISSN 1338-984X (online) 

51 

1 INTRODUCTION  

Semi-finished and finished products are often accompanied upon their 
distribution by a technical report that gives details about their observed technical 
features, so that customers are aware of how to handle them safely and 
effectively. This is a result of legislative requirements, which above all try to 
protect public health and ensure that products serve their original intended 
purpose, and customers’ needs which form the demand and define the character 
of the supplied commodity. The technical features are usually quantifiable 
characteristics, which means that their levels are measured by a measurement 
system of the product suppliers or their business partners. This applies to most 
economic sectors, involving both light and heavy industries. The numerical 
characteristics are usually random variables because their level is affected by 
many factors and not all of them are under control during the production. In other 
words, certain noise is present. Because of the uncertainty, capability indices are 
frequently required by customers so that there is a general idea about where the 
levels of the features can be expected and with what probability. The indices are 
useful before the production becomes a mass production, which otherwise is 
informative enough regarding the product quality level fluctuations due to a long 
production sample history. However, they are also calculated once the production 
has its history and becomes mature because it is necessary to adjust the early-
production rough values of the indices and make them more precise, and also 
because there must be a controlling mechanism ensuring that the production still 
runs its originally planned course and doesn’t divert from it to an unintended 
territory. Once the indices are calculated, the production level they reflect is 
either accepted, or it must be altered if it is not satisfactory. Adjusting production 
is a huge task for any company, though, because of all the factors that enter the 
process. The factors involve composition and amount of materials, the number 
and character of production machinery, the character of operators, production 
environment encompassing air humidity and temperature and other production 
conditions. It is a complex and difficult task (Rzevski and Skobelev, 2014) but 
spending time and financial resources on production changes to bring its level 
higher might be completely unnecessary due to the possible fact that the indices 
do not reflect the true situation. One of the reasons that this case may happen is a 
potential contamination of the data the indices are calculated from, whatever the 
source of the contamination. If data distortion is present, it will most likely be a 
result of the imperfect measurement system used (Automotive Industry Action 
Group, 2010). The system is never perfect, strictly speaking. The question then is 
whether and how the indices are related to the data contamination. Is there any 
relation at all which would allow for the capability index used to signal that 
maybe the management of the company in question should first check the 
measurement system before rushing to change the production, because the 
system imperfections may have distorted the true value of the index? This paper 
tries to answer these questions. 
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The paper is divided into several sections. The following two sections describe 
the methodology used and the most commonly known univariate indices, and 
they also select the index which is in common use. Further, assumptions are 
introduced in the two sections, based on which the whole analysis of the problem 
will be performed. Section four analyses the selected index and the final section 
formulates essential findings and conclusions. 

2 METHODOLOGY 

The paper consists of two major ideological parts. In the first part, potential 
effect of data contamination on the probability distribution of the evaluated 
process characteristic is analysed. The contamination is represented by a random 
variable the distribution of which is not normal, but shares some properties with 
normal distribution, which are known to be its typical features. These features 
include symmetry of its distribution and its zero expected or average value. Also, 
as is the standard way of proceeding, the true uncontaminated process 
characteristic and the variable representing contamination are considered 
statistically independent (Greene, 2011), and the effect of contamination, or the 
distortion of the original variable by contamination, is mathematically expressed 
as an addition. It is assumed that the original uncontaminated variable is 
normally distributed, which is something that should be checked whenever 
capability indices are used, since most indices require this assumption for their 
proper use. The effect of contamination is analysed using sample data obtained 
from simulated random drawings, and the chi-squared statistical test is used to 
see if there is any distortion in the distribution of the originally normal process 
characteristic. In the next part, reaction of process capability to the extent of 
contamination is observed, as well, using differential calculus (Larson and 
Edwards, 2013). The sensitivity analysis allows one to make conclusions about 
when data contamination could be suspected if the capability changes 
unexpectedly. The capability is measured by a selected univariate capability 
index. 

3 CAPABILITY INDICES AND ANALYSIS ASSUMPTIONS 

Many capability indices have been developed over the years (Tošenovský, 2007), 
and we shall concentrate only on a particular one. Our attention will also be 
turned to the univariate case, which is the usual case in practice. Although 
multivariate indices exist, as well, it is more difficult for many companies to use 
and interpret them in practice and so the one-dimensional indices still dominate 
when it comes to their use.  

Several generations of univariate indices were defined and analysed in the past, 
one following another in an effort to remove theoretical problems of their 
predecessors. The Cp index is one of the oldest, comparing the tolerance 
prescribed by customer, a measure of variation allowed for the observed process 
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characteristic, to the true variation of the characteristic based on its normal 
probability model. As is known, the index does not reflect in any way the 
potential diversion of the expected value of the characteristic from the customer-
defined target value, which is something of primary interest to customers, and so 
the index fell out of favour in many industrial organizations. Its successor, the 
Cpk index, was a refinement in the sense that it recognized both not complying 
with the requirement that the characteristic be in average equal to the target value 
and the variation of the characteristic. On the other hand, one of the demerits of 
the index is that it can be misused – not being able to keep the target value can be 
substituted by a lower variation of the characteristic to the extent that the index 
will remain at an acceptably high level. Customers not analysing the genesis 
behind the calculation of the index will thus be fooled into thinking that 
everything is well with the company whose index they observe. The efforts made 
at removing this theoretical drawback resulted over time in a next-generation 
capability index – the Cpm index. This index still allows the aforementioned 
substitution effect but only to a limited extent. Consequently, the room to cheat 
customers via process capability evaluation shrank considerably. Last but not 
least, a further fine-tuning of Cpm brought yet another improvement in the form 
of the Cpmk index. The Cpmk shares the positive features of its predecessor, but is 
stricter in the sense that it punishes the process decentralization more severely. 
This index is frequently used, and we shall concentrate on its properties in the 
next section. 

Let us now turn our attention to the assumptions under which the analysis will be 
carried out. First, as already suggested by the choice of the univariate index, the 
case of two-sided tolerance interval defined for the characteristic of interest will 
be scrutinized. Also, given the index, it is assumed that the quality characteristic, 
to be denoted �, is normally distributed: �~�. Further, it is assumed that the 
characteristic is contaminated by a variable � which represents data 
contamination, mostly due to an imperfect measurement system. The 
consequence of this situation is the fact that whoever tries to calculate process 
capability with the selected index doesn’t base its calculation on the true 
realizations of the variable �, but on the realizations of the random  
variable � = � + �. The usual theoretical model for the contamination variable 
is �~�(0, ��
) (Greene, 2011), but the exact normality will hardly ever, if ever at 
all, be the case. The zero expected value is usually assumed because very often 
there is a negligeable systematic shift in the measurement system due to the 
common practice that operators and other parts of the measurement system are 
varied during the application of the system and so any potential systematic shift 
is close to zero in average. What is often a natural and acceptable assumption, as 
well, is that the variables �, � are independent. This condition implies that for the 
variance of �, ���(�), we have ���(�) = ���(�) + ��
 = ��
 + ��
, regardless 
of whether the contamination is normally distributed or not. To sum up, when it 
comes to the two major statistical characteristics of �, its expected value and 
variance, we have: 
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 �(�) = �(�) + 0 = �, (1) 

 ���(�) = ��
 + ��
. (2) 

As is known from the statistical theory, should both X and Y be normally 
distributed, Z would also be normally distributed. However, as has been outlined, 
Y is usually normally distributed only approximately, which may result in Z not 
being normally distributed. If this is the case, a change in the distribution of Z 
might serve as a signal that data impurity is present. 

4 ANALYSIS 

In this section, we shall analyse the numerical behaviour of the selected 
capability index, the ����	index, which is defined as: 

 ���� = min	� �� !"
#$%&'(("!))' , "! � 

#$%&'(("!))'*.  (3) 

This part follows up the previous section which suggested that if � was normally 
distributed, but � was not, though it shared some features with normally 
distributed variables, then it might be the case that the variable � would not be 
normally distributed. Such an event would be welcome because one could 
become suspicious that the data is contaminated, if the variable of interest � has 
always been quite precisely normally distributed, and all of a sudden it isn’t. The 
analytical section of the paper scrutinizes whether this occurs or not, using 
techniques of simulation. Data is generated from the distribution �(�, ��
) for 
diverse enough values of the two parameters, specifically for � = 1, 5, 10, 50 and ��
 = 1, 5, 10, 50. These figures represent, according to practical experience, 
small values 1 and 5, a medium value 10 and a larger value 50. Also, data from a 
distribution similar to the normal distribution were generated to represent 
realizations of the variable �. To do so, the Student’s t distribution with various 
degrees of freedom (diverse enough values k = 10 and k = 50 were selected) 
serves as a similar distribution. As is known, this distribution is symmetric 
around zero, the expected value of the variable with such a distribution (Forbes, 
et al., 2010). The symmetry envokes a similarity to the normal distribution, and 
the zero expected value is in line with the commonly accepted assumption that 
the data contamination due to measurement errors is zero in average. The data 
sample sizes generated for the various parameters of the two distributions were 
equal to 100. Once the data sets for both variables are generated, realizations of � 
become available, and so it can be tested by standard statistical methods whether � can be consider a normally distributed variable or not. Except for the t 
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distribution, other distributions similar to the normal distribution, at least 
regarding their symmetry, exist, as well. We considered specifically the 
lognormal distribution	-.�(�, �
) with parameters � = 1 or	3 and �
 = 0.1 or 0.2 (Forbes, et al., 2010). Such parameters ensure a high level of symmetry of the 
distribution. For the lognormal case, the normal parameters considered were � =10 or 50 and ��
 = 5 or 50. The rest of the procedure was the same as in the case 
of the t distribution. In both cases, the chi-square test of normality at a 5% 
significance level was used.  

Tab. 1 shows the results of the test with respect to the t-distrubion-based 
simulation of �. The p-values of the test indicate that in all but three cases, 
denoted by “ * “, the hypothesis of normality of � is accepted. The p-values are 
in nearly all the cases greater than 0.05. 

Table1 – Test of Normality of Z with t-distributed Contamination 

2 34 k p-value 

1 1 10 0.59 

1 1 50 0.46 

1 1 200 0.75 

1 5 10 0.12 

1 5 50 0.05* 

1 5 200 0.55 

1 10 10 0.14 

1 10 50 0.19 

1 10 200 0.47 

1 50 10 0.46 

1 50 50 0.61 

1 50 200 0.5 

5 1 10 0.84 

5 1 50 0.15 

5 1 200 0.84 

5 5 10 0.35 

5 5 50 0.26 

5 5 200 0.27 

5 10 10 0.82 

5 10 50 0.87 

5 10 200 0.81 
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2 34 k p-value 

5 50 10 0.22 

5 50 50 0.09 

5 50 200 0.04* 

10 1 10 0.88 

10 1 50 0.23 

10 1 200 0.29 

10 5 10 0.22 

10 5 50 0.85 

10 5 200 0.08 

10 10 10 0.82 

10 10 50 0.74 

10 10 200 0.3 

10 50 10 0.5 

10 50 50 0.9 

10 50 200 0.9 

50 1 10 0.65 

50 1 50 0.85 

50 1 200 0.28 

50 5 10 0.22 

50 5 50 0.32 

50 5 200 0.33 

50 10 10 0.21 

50 10 50 0.55 

50 10 200 0.02* 

50 50 10 0.59 

50 50 50 0.24 

50 50 200 0.24 

 

The following Tab. 2 shows the results of normality testing for the case when the 
contamination component is modelled with a lognormal distribution with the 
aforementioned parameters. It can be seen again that in all but one case the 
hypothesis of normality of � is accepted. The results here are even more 
convincing. 
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Table 2 – Test of Normality with Lognormal Contamination 

(N) 2 (N) 34 (LN) 2 (LN) 34 p-value 

10 5 1 0.1 0.67 

50 5 1 0.1 0.85 

10 50 1 0.1 0.9 

50 50 1 0.1 0.86 

10 5 1 0.2 0.9 

50 5 1 0.2 0.85 

10 50 1 0.2 0.92 

50 50 1 0.2 0.54 

10 5 3 0.1 0.78 

50 5 3 0.1 0.7 

10 50 3 0.1 0.37 

50 50 3 0.1 0.77 

10 5 3 0.2 0.03* 

50 5 3 0.2 0.14 

10 50 3 0.2 0.86 

50 50 3 0.2 0.09 

 

We may conclude at this stage that as long as the contamination is not normally 
distributed, but its distribution has a symmetric shape with heavier or less heavy 
tails than the normal distribution, the data at hand – the realizations of the 
variable � – will in most cases manifest themselves as if they were drawn from a 
normal distribution. This suggests that there is no way of recognizing the 
potential presence of data contamination in a majority of usual cases.  

Since the problem of contamination cannot be recognized securely from the data, 
the question is whether there is a way of detecting it from the computed 
capability index itself, especially in cases when the index has changed from its 
long-term familiar level. To find this out, it is necessary to explore the 
mathematical behaviour of the index and its dependence on the extent to which 
the data contamination is present. This is going to be examined in this part of the 
paper. Before doing so, we shall make some assumption about the index, which 
nonetheless does not place any restrictions on the generality of the conclusions. 
First, it can hardly be expected that the process whose capability is calculated is 
perfectly centralized, so � ≠ 6 is expected with certainty. This is always the case 
in practice because whenever it seems that the process is centralized, it is 
centralized only seemingly due to the fact that all measurement systems are 
imperfect and cannot perform measurements with absolute precision. Further, as 
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long as the amount of decentralization towards USL or LSL is the same, the 
index will be the same, given (3). In this respect, the index behaves 

symmetrically, and so one can use either (789 − �)/3<��
 + (� − 6)
 or  

(� − 989)/	3<��
 + (� − 6)
 for the analysis. In other words, it is not going to 
make a difference if 789 − � or � − 989 is considered for the analysis, when 789 − � = � − 989. We shall use the former case and assume 6 < � < 789. 
Next, although 789 naturally affects the value of the index, we are more 
interested in general conclusions of the form „faster/slower drop/rise of the 
index“ and not so much in its absolute change given by a specific number. This 
intention implies that the level of 789 is not going to change such general 
conclusions and therefore can be set arbitrarily. To give an example of this 
statement, if one uses a level 789> and arrives at ����(>) , whereas someone else 

uses a level 789
 and gets ����(
) , then ����(
) = ?����(>) , where ? = ����(
) /����(>)  is 
a positive constant. Now, if a change in �
 = ��
, say �

 − �>
, alters the index ����(>)  less than a change �@
 − �#
, the same will be true about the change of ����(
) , because ∆����(
) = ?∆����(>) , and ? > 0 remains the same. To see the latter, 
compare the value of ?, ?
, after the change of the variance, 

 ?
 = (�� '!")/#$%''(("!))'
(�� C!")/#$%''(("!))', (4) 

with its value ?> before the change of the variance, 

 ?> = (�� '!")/#$%C'(("!))'
(�� C!")/#$%C'(("!))'. (5) 

We have ?
/?> = 1. Thus, the upper limit has no effect on the general 
conclusions. Finally, we are interested in the amount of process decentralization, 
among other things, i.e. in the difference (� − 6)
, not in 6 itself. In other words, 
the target value can also be set arbitrarily, as long as it stays in the middle of the 
tolerance interval, since it is the deviation from 6, not 6, that matters.  

Let us now imagine that we are to evaluate the process by estimating the value of 

the expression (789 − �)/3<��
 + (� − 6)
, but instead we estimate something 

else: the value (789 − �)/3<��
 + ��
 + (� − 6)
 because we work with 
realizations of the variable � instead of � due to the presence of data 
contamination (see formulas (1) and (2)). The question is how the index reacts to 
a change in the amount of data contamination, the contamination being measured 
by ��
, given the current level of the process, defined by ��
 and (� − 6). The 
answers are revealed by the concept of rate of change. 

The rates of change of ���� with respect to ��
 are: 
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D����D��
 = −(789 − �)6<F��
 + ��
 + (� − 6)
G#, (6) 

where USL and T are arbitrary constants and 6 < � < 789. Using the concept of 
marginal changes, the result implies that the index drops whenever data 
contamination enters the calculations, but the drop realizes to various extent 
depending on the original process capability before the drop due to 
contamination. Given �, the drop due to contamination decreases when the 
original capability is lower in terms of a higher ��
, and an analogous result 
applies for a given variability ��
: the greater the amount of decentralization of 
the process, the smaller the drop of the index due to contamination. If it happens, 
however, that there is no contamination in the data, the question of what could 
have caused a drop in the index may still arise. Was it a greater process 
variability or greater decentralization? Of course, the answer to this question is 
fairly straightforward and is given by the formula defining the index. Based on 
the behaviour of the index implied by (6), it is now possible to make some 
conclusions regarding the use of the results just presented. 

5 CONCLUSION 

Let us make some final remarks about the consequencies implied by the 
behaviour of the ����. Any chance of recognizing the situation, when the data is 
contaminated, by observing potential deviations in the probability distribution of 
the quality characteristic of interest from its normal distribution is next to zero. 
Data contamination, as we have seen, does not change the normal distribution in 
a majority of cases, if the stochastic behaviour of the contamination is modelled 
with the well-known symmetric or near-symmetric distributions –  
the t-distribution or the lognormal distribution. What the analysis does show, 
however, is that if the company using the index is used to high levels of process 
capability and records its drop, it is worth analysing its measurement system first 
before proceeding to dismantle the much more complicated production structure 
with all its production inputs and conditions. The index may have declined due to 
imprecise data instead, as at its higher levels it is more sensitive to data 
contamination. On the contrary, when the production capability tends to be low 
for a longer period of time, its further deterioration is most likely a result of 
production inefficiencies, not imprecise data. In that case, methods such as 
FMEA should be used. FMEA is good for “optimizing a product or process 
design from the perspective of potential failures” (Vykydal, et al., 2013). If no 
data contamination is found, and the index drops from a high level, it is more 
likely due to increased process variability, to which the index is more sensitive at 
its high levels, whereas a drop in the index from its lower levels may be due to 
increased decentralization rather than increased variability, provided the 
decentralization greater than one half can be expected. This is implied by the 
second power in the denominator of (3). The logic behind the discussion on 
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whether it is a greater decentralization or higher variability that worsened the 
process capability is such that when decentralization can be suspected of causing 
a drop in the index, it should be explored first, since if it is the case, it will 
usually be a result of a systematic problem in the process, which is much easier 
to detect and remove, as compared to detecting and lowering a process variability 
induced by a myriad of factors small in their effect. 

Of course, when the measurement system requires an inspection, an upgrade of 
this management subsystem should be approached. By viewing this subsystem as 
a part of the ISO-based quality management system, one may, for instance, fine-
tune it through role-play simulation techniques, which have the potential to better 
describe its functioning (Zgodavová, Kisela and Sutoová, 2016). By improving 
the measurement system, no more encumberance is put upon the entire system 
through an introduction of yet another variability. A reasonable approach may 
also include more sophisticated decision-making techniques, especially when 
several measurement systems are compared with respect to their quality, the 
comparison taking into account more than feature of theirs. Models, based on 
utility these measurement systems provide to their users, can then be analysed 
(see, Krajňák and Krzikallová, 2016, for the description of such models). 
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