Business Process Risk Modelling in Theory and Practice

Miroslav Špaček


Purpose: The purpose of the paper is to introduce SW based decision-making tool that helps managers cope with risks and uncertainties of selected industrial processes. The solution is substantiated by the theoretical background.

Methodology/Approach: The research is based on combination of contextual interviews with process management experts and Business Process Modelling Notion (BPMN). The former is aimed at the identification of industrial processes with highest risk exposure the latter is conducive to the design of processes to be subjected to stochastic simulation.

Findings: The findings show that the risks and uncertainties in the management of industrial processes can be kept under control when using advanced tools of risk analysis as simulation approaches. The solution proposed comes in handy to risk analysts or process managers.

Research Limitation/Implication: The library of process models which were included into stochastic simulation includes selected processes as investments, service providing or economic value-added engineering. Additional processes are being included on ongoing basis.

Originality/Value of paper: The paper offers the solution to industrial process risk management which goes far beyond academic sphere and provides industrial practitioners SW tool that facilitates process risk management.


Al Badi, K., 2019. Discrete event simulation and pharmacy process re-engineering. International Journal of Health Care Quality, [e-journal] 32(2), pp.398-411. DOI: 10.1108/IJHCQA-05-2018-0105.

Caetano, A., Zacaries, M., Silva, A. and Tribolet, J., 2005. A role-based framework for business modelling. In: HICSS (Hawaii International Conference on System Sciences), Proceedings of the Proceedings of the 38th Annual Hawaii International Conference on System Sciences. Honolulu, Hawaii, USA, 09-12 March. Washington, DC, US: IEEE Computer Society.

Campbell, J. L., Quincy, C., Osserman, J. and Pedersen, O. K., 2013. Coding In-depth Semistructured Interviews: Problems of Utilization and Intercoder Reliability and Agreement. Sociological methods & Research, [e-journal] 42(3), pp.294-320. DOI: 10.1177/0049124113500475.

Cernauskas, D. and Tarantino, A., 2009. Operational risk management with process control and business process modelling. The Journal of Operational Risk, [e-journal] 4(2), pp.3-17. DOI: 10.21314/JOP.2009.061.

China Academy of Information and Communication Technology, 2016. China Industry Development Report 2016. Beijing: Posts and Telecom Press.

Crouhy, M., Galai, D. and Mark, R., 2014. The Essentials of Risk Management. 2nd ed. New York: McGraw-Hill Education.

Curtis, B., Kellner, M. and Over, J., 1992. Process Modelling. Communications of the ACM, [e-journal] 35(9), pp.75-90. DOI: 10.1145/130994.130998.

Damij, N., Boškoski, P., Bohanec, M. and Mileva Boshkoska, B., 2016. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model. PLoS ONE, [e-journal] 11(2), e0148391. DOI: 10.1371/journal.pone.0148391.

Davila, T., Epstein, M.J. and Shelton, R., 2012. Making innovation work: how to manage it, measure it, and profit from it. Upper Saddle River, NJ: Pearson FT Press.

Dezhina, I., Ponomarev, A. and Frolov, A., 2015. Advanced Manufacturing Technologies in Russia: Outlines of a New Policy. Foresight-Russia, [e-journal] 9(1), pp.20-31. DOI: 10.17323/1995-459X.2015.1.20.31.

Gassmann, O., Frankenberger, K. and Csik, M., 2014. The Business Model Navigator. Harlow: Pearson FT Publishing.

Greasley, A., 2003. Using business‐process simulation within a business‐process reengineering approach. Business Process Management Journal, [e-journal] 9(4), pp.408-420. DOI: 10.1108/14637150310484481.

Hao, H., Qiao, Q., Liu, Z. and Zhao, F., 2017. Impact of Recycling on energy consumption and greenhouse gas emission from electric vehicle production: The China 2025 case. Resources, Conservation and recycling, [e-journal] 122, pp.114-125. DOI: 10.1016/j.resconrec.2017.02.005.

Havey, M., 2005. Essential Business Process Modelling. Sebastopol, CA: O'Reilly Media.

Heinrich, R., Merkle, P., Henss, J. and Paech, B., 2017. Integrating business process simulation and information system simulation for performance prediction. Software System Model, [e-journal] 16, pp.257-277. DOI: 10.1007/s10270-015-0457-1.

Kagermann, H., Wahlster, W. and Helbig, J., 2013. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0. -- Securing the Future of German Manufacturing Industry. [pdf] München: National Academy of Science and Engineering. Available at: <> [Accessed 16 January 2021].

Kao, H-A. and Yang, S., 2014. Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP 16, pp.3-8. DOI: 10.1016/j.procir.2014.02.001.

Kaufmann, T., 2015. Geschäftsmodelle in Industrie 4.0 und dem Internet der Dinge – Der Weg vom Anspruch in die Wirklichkeit. Wiesbaden: Springer.

Kazakova, H., Zayarky, I. and Medvedev, M., 2019. Forecasting of Financial Flows in Business systems taking into Account the Risk and Uncertainty of Interaction. In: T. Simos and CH. Tsitouras, eds., International Conference on Numerical Analysis and Applied mathematics (ICNAAM 2018). Rhodes, Greece, 13-18 September 2018. AIP Publishing. Article No. 430021.

Kumagai, K., Araki, M. and Ono, T., 2014. Business Process Modelling Method with Hierarchical Business Variation Analysis. IEEJ Transactions on Electronics Information and Systems, [e-journal] 134(6), pp.806-813. DOI: 10.1541/ieejeiss.134.806.

Luo, W. and Tung, A., 1999. A framework for selecting business process modelling methods. Industrial Management & Data Systems, [e-journal] 99(7), pp.312-319. DOI: 10.1108/02635579910262535.

Magretta, J., 2002. Why Business Models Matter. Harvard business review, 80(5), pp.86-92.

Nurcan, S., Etien, A., Kaabi, R. and Zoukar, I., 2005. A strategy driven business process modelling approach. Business Process Management Journal, [e-journal] 11(6), pp.628-649. DOI: 10.1108/14637150510630828.

Osterwalder, A. and Pigneur, Y., 2010. Business Model Generation. Hoboken, New Jersey: Wiley & Sons.

Patig, S. and Stolz, M., 2013. A pattern-based approach for the verification of business process descriptions. Information and Software Technology, [e-journal] 55(1), pp.58-87. DOI: 10.1016/j.infsof.2012.07.002.

Pidd, M. and Carvalho, A., 2007. Simulation software: Not the same yesterday, today and forever. Journal of simulation, [e-journal] 1(1), pp.7-20. DOI: 10.1057/palgrave.jos.4250004.

Praca, I., Ramos, S., Andrade, R. da Silva, A.S. and Sica, E.T., 2019. Analysis and Simulation of Local Energy Markets. In: University of Ljubljana, Faculty of Electrical Engineering, Proceedings of 16th International Conference on The European Energy Market (EEM). Ljubljana, Slovenia, 18-20 September 2019. IEEE.

Prause, M. and Weigand, J., 2016. Industry 4.0 and Object-Oriented Development: Incremental and Architectural Change. Journal of Technology Management and Innovation, [e-journal] 11(2), pp.104-110. DOI: 10.4067/S0718-2724201600020001.

Ramsauer, C., 2013. Industrie 4.0 – Die Produktion der Zukunft. WINGbusiness, 3, pp.6-12.

Rippl, T., 2005. Business Process Modelling – methods and methodologies. Systémová integrace, 12(3), pp.27-42.

Silva, S.A., de Abreu, P.H.C. and de Amorim, F.R., 2019. Application of Monte Carlo simulation for analysis of costs and economics risks in a banking agency. IEEE Latin America Transactions, 17(3), pp.409-417.

Silver, B., 2009. BPMN Method and Style (with BPMN Implementer’s Guide). 2nd ed. Aptos, CA, USA: Cody-Cassidy Press.

Silverstein, D., Samuel, P. and Decarlo, N., 2012. The innovator's toolkit: 50+ techniques for predictable and sustainable organic growth. Hoboken: John Wiley & Sons.

Smit, J., Kreutzer, S., Moeller, C. And Carlberg, M., 2016. Policy Department A: Economic and Scientific Policy Industry 4.0. Study. [pdf] Available at: [Accessed 08 September 2019].

Špaček, M. and Červený, K., 2020. Kreativní metody v inovacích. Praha: Oeconomia.

Špaček, M., 2015. Pravděpodobnostní přístupy k analýze rizik investičních projektů a jejich využití v praxi. Plzeň: NAVA - Nakladatelská a vydavatelská agentura.

Tbaishat, D., 2017. Business process modelling using ARIS: process architecture. Library management, 38(2/3), pp.88-107. DOI: 10.1108/LM-05-2016-0042.

Tbaishat, D., 2018. Process architecture development using Riva and ARIS: comparative study. Business Process Management Journal, [e-journal] 24(3), pp.837-858. DOI: 10.1108/BPMJ-04-2016-0086.

TIBCO, 2020. TIBCO Business Studio. [computer program] TIBCO® BPM Enterprise. Available at: [Accessed 19 January 2021].

Tichý, M., 2006. Ovládání rizika. Praha: C.H. Beck.

Tigkiropoulos, K., Kyratsis, P. and Dinopolulou, V., 2009. Business Process Reengineering Through Business Process Simulation: A Case Study. The Cyprus Journal of Sciences, 7, pp.23-91.

Vacík, E., Špaček, M., Fotr, J. and Kracík, L., 2018. Project Portfolio Optimization as A Part of Strategy Implementation Process in Small and Medium-Sized Enterprises: A Methodology of the Selection of Projects with The Aim to Balance Strategy, Risk and Performance. E+M Ekonomie a Management, [e-journal] 21(3), pp.107-123. DOI: 10.15240/tul/001/2018-3-007.

Wang, W. and Duffy, A.H.B., 2009. A triangulation approach for design research. In: Proceedings of ICED'09, 2, pp.275-286. Available at: [Accessed 14 December 2020].

Wildemann, H., 2014. Cost-Engineering. Verankerung des Cost-Engineerings im Unternehmen.In: G. Schuh and V. Stich, eds. Enterprise-Integration. Springer, Berlin. pp.181-193.

Young, M. L., Buckley, S., Caswell, N., Nigam, A. and Ramachandran, B., 2020. Business Process Modelling for an Opportunity Management Process. Yorktown, NY: IBM T. J. Watson Research Center.

Zhang, Z., Liu, S. and Tang, M., 2014. Industry 4.0: Challenges and Opportunities for Chinese Manufacturing Industry. Technical Gasette, 26(6), III-IV.


Miroslav Špaček (Primary Contact)
Špaček, M. (2021). Business Process Risk Modelling in Theory and Practice. Quality Innovation Prosperity, 25(1), 55–72.

Article Details