Legal Metrology and System for Calibration and Verification of the Radar Level Sensors
Abstract
Purpose: The paper deals with the legal metrology that is principally responsible for assuring the uniformity and correctness of measurements and presents the results of the scientific and research work in the cross-disciplinary fields. The design of the new measuring system for the verification of the radar level gauges.
Methodology/Approach: The requirements on performing verification of the measuring instruments are changed significantly, especially the requirement for reducing the time necessary for putting the measuring instruments out of service. Slovak legal metrology (SLM) has developed a number of its own systems for verification of the legally controlled measuring instruments.
Findings: The paper presents the results of the research activities aimed to refine and improve metrological continuity and metrological control of selected types of measuring instruments.
Research Limitation/implication: This paper are based on the theoretical and practical knowledge from the field of metrology, the analysis of the legislative and normative requirements on the measuring instruments metrological assurance, and knowledge gathered during the practical performance of the measuring instruments metrological control.
Originality/Value of paper: In the paper, there are presented those results of solving the tasks in the research and development fields that lead to the higher measurement accuracy, and to the elimination of the undesired influences that may occur during a measurement.
Full text article
References
Burenin, P.V., Pakov, S.V. and Sizikov, O.K., 1998. Reducing the measurement error of pulse-radar level gauges for bulk media. Measurement Techniques, 41(6), pp. 533-535, ISSN 05431972.
Gu, C., Xu, W., Wang, G., Inoue, T., Rice, J.A., Ran, L. and Li, C., 2014. Noncontact Large-Scale Displacement Tracking: Doppler Radar for Water Level Gauging. IEEE Microwave and Wireless Components Letters, 24(12), pp.899-901; DOI: 10.1109/LMWC.2014.2352852.
Kim, S.D. and Lee, J.H., 2012. A new transmitted-reference FMCW-UWB radar for gasoline tank level gauge. Proceedings of the 2012 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2012. 2, pp.1171-1174. ISBN: 978-160132225-8, Available at. https://www.researchgate.net/publication/290573100_A_new_transmitted-reference_FMCW-UWB_radar_for_gasoline_tank_level_gauge
Kim, S. and Nguyen, C., 2003. A displacement measurement technique using millimeter-wave interferometry (2003). IEEE Transactions on Microwave Theory and Techniques, 51(6), pp.1724-1728. DOI: 10.1109/TMTT.2003.812575.
Liberman, V.V., 2012. Level measurement using radar level gauges. Automation and Remote Control, 73(3), pp.566-574, ISSN 00051179 DOI: 10.1134/S0005117912030149.
Michalecki, G., 2001. Automatic calibration of gauge blocks measured by optical interferometry. Measurement Science Review, 1(1), pp.93-96. Available at: http://www.measurement.sk/Papers3/Michalec.pdf
Mikuš, P. and Harťanský, R., 2013. The Errors in Radar Level Gauge Calibration. Measurement Scienece Review MEASUREMENT 2013, Proceedings of the 9th International Conference, Smolenice, Slovakia, pp.355-358. Available at: http://www.measurement.sk/M2013/doc/proceedings/355_Mikus-1.pdf
Mikuš, P., Harťanský, R. and Či?áková, O., 2014. Diffraction Problem in Radar Level Gauge Verification. Universal Journal of Electrical and Electronic Engineering. 2(4), pp. 165-169, DOI: 10.13189/ujeee.2014.020404. Available at: http://www.hrpub.org/download/20140305/UJEEE4-14901774.pdf
Mikuš, P., Harťanský, R. and Smieško, V., 2016. The proposal of the laboratories for calibration of radar level Gauges. Przeglad Elektrotechniczny, 92(2), pp.72-74, ISSN 00332097, DOI: 10.15199/48.2016.02.21. Available at: http://pe.org.pl/articles/2016/2/21.pdf
Motzer, J., 2000. PULS RADAR gauge for level measurement and process control. Proceedings of the 1999 IEEE MTT-S International Microwave Symposium; Boston, MA, USA, 3, pp.1563-1566, ISSN 0149645X.
Oréans, L. and Heide, P., 2000. Novel Radar Level Gauge Using 24-GHz-Technology. Technisches Messen, 67(5), pp.214-219, ISSN 01718096.
Palen?ár R. and Halaj, M., 1999. Metrologické zabezpe?enie systémov riadenia kvality [Metrological assurance of the quality systems management]. 2nd ed. Bratislava: STU Bratislava. ISBN 80-227-1171-3.
Palen?ár R., Kureková E. and Halaj, M., 2007. Meranie a metrológia pre manažérov [Measurement and metrology for managers]. Bratislava: STU Bratislava, ISBN 978-80-227-2743-3.
Pekar?íková, M., Trebuňa P. and Fiľo, M., 2014. Methodology for
classification of material items by analysis abc/xyz and the creation of the material portfolio. Applied Mechanics and Materials, Vol. 611, pp.358-365, ISSN 1660-9336.
Popovi? R., Kliment M., Trebuňa P. and Pekar?íková, M., 2015. Simulation as a tool for process optimization of logistic systems. Acta Logistica, 2(3), pp.1-5, Available at: http://www.actalogistica.eu/issues/2015/III_2015_01_Popovic_Kliment_Trebuna_Pekarcikova.pdf [Accessed 5 September 2015].
Trebuňa P., Kliment M., Edl, M. and Petrik, M., 2014. Document creation of simulation model of expansion of production in manufacturing companies. Procedia Engineering, Vol. 96, pp.477-482, Available at: http://www.sciencedirect.com/science/article/pii/S1877705814031695 [Accessed 5 September 2015].
Wang, G., Gu, C., Rice, J., Inoue, T. and Li, C., 2013. Highly accurate noncontact water level monitoring using continuous-wave Doppler radar. WiSNet 2013 - Proceedings: 2013 IEEE Topical Conference on Wireless Sensors and Sensor Networks - 2013 IEEE Radio and Wireless Week, RWW 2013. pp.19-21; DOI: 10.1109/WiSNet.2013.6488620.
Wei, M. , Xu, K.J. and Ma, Y., 2013. An echo signal processing method without reference curve for guided wave radar level gauge. IEEE International Conference on Control and Automation, ICCA. pp.972-977, DOI: 10.1109/ICCA.2013.6565025.
Zgodavova, K., 2010. Complexity of entities and its metrological implications, 0365-0367, Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, ISBN 978-3-901509-73-5, ISSN 1726-9679, pp.0365-0366, B. Katalinic (ed.), Published by DAAAM International, Vienna, Austria 2010; DOI:10.1073/pnas.1002194107, Available at: http://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2010/20162_Annals_1_head.pdf
Zgodavova, K. and Slimak, I., 2008. Advanced improvement of quality. Annals of DAAAM and Proceedings of the International DAAAM, Published by DAAAM International, Vienna, Austria 2010, pp.1551-1552, ISSN 17269679, ISBN 978-390150968-1, Available at: http://www.freepatentsonline.com/article/Annals-DAAAM-Proceedings/225316745.html
Authors
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. This journal is licensed under a Creative Commons Attribution 4.0 License - http://creativecommons.org/licenses/by/4.0.
Authors who publish with the Quality Innovation Prosperity agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.