Risk Assessment Using the PFDA-FMEA Integrated Method

Miroslav Čička (1), Renáta Turisová (2), Darina Čičková (3)
(1) Technical University of Kosice, Slovakia,
(2) Technical University of Kosice, Slovakia,
(3) , Slovakia

Abstract

Purpose: The paper aims to introduce risk assessment in new product development as an important activity for a successful new product launch. A practical example is presented to demonstrate the integration of tools Failure Mode and Effect Analysis (FMEA) and Pythagorean Fuzzy Dimensional Analysis (PFDA) at new product development process, which is a machined component.


Methodology/Approach: Individual steps for creating a case study were carried out: create a Subject Matter Expert (SME) team, identify product failure modes, use linguistic values to assess the FMEA, compute and obtain the PFDA-FMEA and determine the product failure modes ranking.


Findings: Minimized uncertainty in the final evaluation of the FMEA and improvement in the decision-making process based on the risks already identified in the new product development process.


Research Limitation/Implication: The PFDA-FMEA method was based on the risk assessment of a machined part development process. Nevertheless, this method can be used for application in many other areas of industry that require high precision in risk analysis.


Originality/Value of paper: The aim of this paper is to reveal a new integrated method in which FMEA, Pythagorean Fuzzy Sets (PFS) and Dimensional Analysis (DA) are coherent in one model.

Full text article

Generated from XML file

References

Automotive Industry Action Group (AIAG), 2022. AIAG.org - Automotive Industry Action Group. [online] Available at: < https://www.aiag.org/ > [Accessed 04 May 2022].

Boral, S., Howard, I., Chaturvedi, S.K., McKee, K. and Naikana, V., 2020. An integrated approach for fuzzy failure modes and effects analysis using fuzzy AHP and fuzzy MAIRCA. Engineering Failure Analysis, [e-journal] 108, 104195. DOI: 10.1016/j.engfailanal.2019.104195.

Bowles, J.B. and Peláez, C.E., 1995. Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliability Engineering & System Safety, 50(2), pp.203-213.

Cao, T., Zhang, H., Zheng, H., Yang, Y. and Wang, X., 2013. Quantitative HAZOP Risk Analysis for Oil Tanks Using the Fuzzy Set Theory. In: International Pipeline Conference, 2012 9th International Conference. Calgary, Albania, Canada. 24-28 September 2012. ASME. Pp.379-385.

Čepin, M., 2011. Event Tree Analysis. London: Springer.

Česká společnost pro jakost, 2019. Příručka FMEA - analýza možností vzniku vad a jejich následků. Praha: Česká společnost pro jakost.

Dai, W., Maropoulos, P.G., Cheung, W.M. and Tang, X., 2011. Decision-making in product quality based on failure knowledge. International Journal of Product Lifecycle Management, 5(2-4), pp.143-163.

Ferdous, R., Khan, F., Sadiq, R., Amyotte, P. and Veitch, B., 2012. Handling and updating uncertain information in bow-tie analysis. Journal of Loss Prevention in the Process Industries, 25(1), pp.8-19.

García-Aguirre, P.A., Pérez-Domínguez, L., Luviano-Cruz, D., Gómez, E.M., Pérez-Olguin, I.J. and Dávalos-Ramírez, J.O., 2021a. Risk Assessment With Value Added Pythagorean Fuzzy Failure Mode and Effect Analysis for Stakeholders. IEEE Access, 149(9), pp.560-568.

García-Aguirre, P.A., Pérez-Domínguez, L., Luviano-Cruz, D., Noriega, J.J., Gómez, E.M. and Callejas-Cuervo, M., 2021b. PFDA-FMEA, an integrated method improving FMEA assessment in product design. Applied Sciences, [e-journal] 11(4), 1406. DOI: 10.3390/app11041406.

Goyal, A., 2020. A Critical Analysis of Porter’s 5 Forces Model of Competitive Advantage. Journal of Emerging Technologies and Innovative Research, 7(7), pp.149-152.

Huang, J., Jian-Xin, Y., Hu-Chen, L. and Ming-Shun, S., 2020. Failure mode and effect analysis improvement: A systematic literature review and future research agenda. Reliability Engineering & System Safety, 199(C), 106885. DOI: 10.1016/j.ress.2020.106885.

Juhaszova, D., 2013. Failure Analysis in Development & Manufacture for Customer. Quality Innovation Prosperity, [e-journal] 17(2), pp.89-102. DOI: 10.12776/qip.v17i2.203.

Karunathilake, H., Bakhtavar, E., Chhipi-Shrestha, G.K., Mian, H.R., Hewage, K. and Sadiq, R., 2020. Decision making for risk management: A multi-criteria perspective. Methods in Chemical Process Safety, [e-journal] 4, pp.239-287. DOI: 10.1016/bs.mcps.2020.02.004

Kumar, P., Raju, N., Navaneetha, M. and Ijmtst, E., 2021. Reliability Analysis of Dumpers through FMEA-TOPSIS Integration. International Journal for Modern Trends in Science and Technology, [e-journal] 7(9), pp.110-118. DOI: 10.46501/IJMTST0709018.

Lengyel, L., Zgodavová, K. and Bober, P., 2012. Modeling and Simulation of Relocation of a Production in SIMPRO-Q Web Based Educational Environment. International Journal of Advanced Corporate Learning (iJAC), [e-journal] 5(1), pp.26-31. DOI: 10.3991/ijac.v5i1.1878.

Liu, H.-C., Chen, X.-Q., Duan, C.-Y. and Wang, Y.-M., 2019. Failure mode and effect analysis using multi-criteria decision making methods: A systematic literature review. Computers & Industrial Engineering, [e-journal] 135, pp.881-897. DOI: 10.1016/j.cie.2019.06.055.

Magalhães, W.R.d. and Lima Junior, F.R., 2021. A model based on FMEA and Fuzzy TOPSIS for risk prioritization in industrial. Gestão & Produção, [e-journal] 28(4), e5535. DOI: 0.1590/1806-9649-2020v28e5535.

Mihaliková, M., Zgodavová, K., Bober, P. and Špegárová, A., 2021. The Performance of CR180IF and DP600 Laser Welded Steel Sheets under Different Strain Rates. Materials, [e-journal] 14(6), 1553. DOI: 0.3390/ma14061553

Nagyová, A., Pačaiová, H., Gobanová, A. and Turisová, R., 2019. An Empirical Study of Root-Cause Analysis in Automotive Supplier Organisation. Quality Innovation Prosperity, [e-journal] 23(2), pp.34-45. DOI: 10.12776/qip.v23i2.1243.

Qin, J., Xi, Y. and Pedrycz, W., 2020. Failure mode and effects analysis (FMEA) for risk assessment based on interval type-2 fuzzy evidential reasoning method. Applied Soft Computing, [e-journal] 89(C). Available at: < https://dl.acm.org/doi/abs/10.1016/j.asoc.2020.106134 > [Accessed 21 November 2022]. DOI: 10.1016/j.asoc.2020.106134.

Sabaei, D., Erkoyuncu, J. and Roy, R., 2015. A Review of Multi-criteria Decision Making Methods for Enhanced Maintenance Delivery. Procedia CIRP, 37, pp.30-35.

Sarkar, B., 2011. Fuzzy decision making and its applications in cotton fibre grading. Soft Computing in Textile Engineering, [e-journal] 2011, pp.353-383. DOI: 10.1533/9780857090812.5.353.

Solc, M., Markulik, S., Petrik, J., Balazikova, M., Blasko, P., Kliment, J. and Bezak, M., 2021. Application of FTA Analysis for Calculation of the Probability of the Failure of the Pressure Leaching Process. Applied Sciences, [e-journal] 11(15), 6731. DOI: 10.3390/app11156731.

Tixier, J., Dusserre, G., Salvi, O. and Gaston, D., 2002. Review of 62 risk analysis methodologies of industrial plants. Journal of Loss Prevention in the Process Industries, 15(4), pp.291-303.

Turisova, R. and Kadarova, J., 2015. Increasing the accuracy of the FMEA method. Investment Management and Financial Innovations, 12(4), pp.176-186.

Tzeng, G.-H. and Huang, J.-J., 2014. Fuzzy Multiple Objective Decision Making. Boca Raton: Taylor Francis Group.

VDA, 2022. VDA: German Association of the Automotive Industry. [Online] Available at: < https://www.vda.de/en > [Accessed 05 April 2022].

Villa Silva, A., Pérez Dominguez, L., Martínez Gómez, E., Alvarado-Iniesta, A. and Pérez Olguín, I., 2019. Dimensional analysis under pythagorean fuzzy approach for supplier selection. Symmetry, [e-journal] 11(3), 336. DOI: 10.3390/sym11030336.

Yager, R., 2013. Pythagorean fuzzy subsets. In: IEEE, Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS). Edmonton, Canada. 24-28 June 2013. IEEE. pp.57-61. DOI: 10.1109/IFSA-NAFIPS.2013.6608375.

Yucesan, M., Gul, M. and Celik, E., 2021. A holistic FMEA approach by fuzzy based Bayesian network. Complex & Intelligent Systems, [e-journal] 7(1), 18p. DOI: 10.1007/s40747-021-00279-z.

Zhang, H., Dong, Y., Xiao, J., Chiclana, F. and Herrera-Viedma, E., 2020. Personalized individual semantics-based approach for linguistic failure modes and effects analysis with incomplete preference information. Quality & Reliability Engineering, [e-journal] 52(11), pp.1275-1296. DOI: 10.1080/24725854.2020.1731774.

Authors

Miroslav Čička
mirko.cicka@gmail.com (Primary Contact)
Renáta Turisová
Darina Čičková
Author Biographies

Miroslav Čička, Technical University of Kosice

Department of Safety and Production Quality

Faculty of Mechanical Engineering

Technical University of Kosice

Kosice

Slovakia

Renáta Turisová, Technical University of Kosice

Department of Safety and Production Quality

Faculty of Mechanical Engineering

Technical University of Kosice

Košice

Slovakia

Čička, M., Turisová, R., & Čičková, D. (2022). Risk Assessment Using the PFDA-FMEA Integrated Method. Quality Innovation Prosperity, 26(3), 112–134. https://doi.org/10.12776/qip.v26i3.1772

Article Details

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.

No Related Submission Found