Confidence Intervals for the Mean in Selecting an Appropriate Time-Dependent Distribution Model for Processes with Non-Normal Instantaneous Distributions

Milan Terek (1)
(1) School of Management, Slovakia

Abstract

Purpose: This paper proposes using confidence intervals for the mean to select
a suitable time-dependent distribution model for a process with non-normal instantaneous distributions.


Methodology/Approach:  The approach examines a studied characteristic by analysing its distribution, location, dispersion, and shape, all of which are time functions. The values of the characteristic are determined by sampling from the process flow. A time-dependent distribution model represents the process.


Findings: The paper explains how to utilise confidence intervals for the mean when selecting an appropriate time-dependent distribution model for processes with non-normal instantaneous distributions.


Research Limitation/Implication: The methods described in this document pertain exclusively to continuous quality characteristics and can be applied to analyse processes across various industrial and economic sectors. The presented procedures are appropriate for use when the instantaneous distributions are non-normal.


Originality/Value of paper: Confidence intervals for the mean can improve decision-making when selecting a suitable time-dependent distribution model.

Full text article

Generated from XML file

References

Agresti, A., Franklin, C. A., Klingenberg, B. 2023. Statistics: The Art and Science of Learning from Data, 5th Edition, Harlow: Pearson Education Limited.

Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., Cochran, J. J., Fry, M. J., Ohlmann, J. W. 2020. Statistics for Business and Economics, 14th edition, Metric Version, Singapore: Cengage Learning, Inc.

Benková, M., Bednárová, D., Bogdanovská, G., 2024. Process Capability Evaluation Using Capability Indices as a Part of Statistical Process Control. Mathematics 2024, 12, 1679.

Costa, A. R., Barbosa, C., Santos, G., M., Alves, R., 2019. Six Sigma: Main Metrics and R-Based Software for Training Purposes and Practical Industrial Quality Control. Quality Innovation Prosperity/ Kvalita Inovácia Prosperita 23/2. https://doi.org/10.12776/qip.v23i2.1278.

Brown-Forsythe test. [online] Available at: brown forsythe test - Wikipedia [21 May 2024].

Ghasemi, A., Zahediasl, S., 2012. Normality tests for statistical analysis: a guide for non-statisticians. International journal of endocrinology and metabolism, 10 (2). https://doi.org/10.5812/ijem.3505.

Giard, V., 1985. Statistique appliquee a la gestion. 5e edition. Paris: Economica.

ISO/DIS 22514-2, 2024. Statistical methods in process management—Capability and performance ̶ Part 2: Process capability and performance of time-dependent process models. Draft International Standard.

ISO/DIS 11462-1, 2025. Guidelines for implementation of statistical process control (SPC) ̶ Part 1: Statistical Process Management — Elements, Tools and Techniques of SPC. Draft International Standard.

Jarošová, E., Noskievičová, D., 2015. Pokročilejší metody statistické regulace procesu. Praha: Grada Publishing.

Levene's test. [online] Available at: Levene's test—Wikipedia [21 May 2024].

Median test [online] available at: https://en.wikipedia.org/wiki/median_test [21 May 2024].

Miller, I., Miller, M., 2014. John Freund's Mathematical Statistics with Applications. Eighth edition. Harlow: Pearson Education Limited.

Montgomery, D. C., 2020. Introduction to Statistical Quality Control. Eighth edition. Hoboken: J. Wiley & Sons.

Montgomery, D. C., Runger, G. C., 2018. Applied statistics and probability for engineers. Seventh edition. Hoboken: Wiley & Sons.

Oakland, J., Oakland, R., 2019. Statistical Process Control. 7th Edition. New York: Routledge.

Pearn, W. L., Kotz, S., 2006. Encyclopedia and Handbook of Process Capability Indices. A Comprehensive Exposition of Quality Control Measures. Singapore: World Scientific Publishing Co. Pte. Ltd.

Terek, M., Hrnčiarová, Ľ., 2004. Štatistické riadenie kvality. Bratislava: Iura Edition.

Terek, M., 2017a. Interpretácia štatistiky a dát. 5. doplnené vydanie. Košice: Equilibria.

Terek, M., 2017b. Interpretácia štatistiky a dát. Podporný učebný materiál. 5. doplnené vydanie. Košice: Equilibria.

Terek, M., 2019. Dotazníkové prieskumy a analýzy získaných dát. 1. vydanie. Košice: Equilibria.

Terek, M., 2025. How to Use Confidence Intervals in Selecting a Suitable Time-Dependent Distribution Model for the Process. Quality Innovation Prosperity/ Kvalita Inovácia Prosperita 29/1.

Thode, H.C. Jr., 2002. Testing for Normality. New York: Marcel Dekker.

Tošenovský, J., Tošenovský, F., 2019. Possibilities of Using Graphical and Numerical Tools in the Exposition of Process Capability Assessment Techniques. Quality Innovation Prosperity/ Kvalita Inovácia Prosperita 23/2.

Zgodavová, K., Bober, P., Majstorovič, V., Monková, K., Santos, G., Juhászová, D., 2020. Innovative Methods for Small Mixed Batches Production System Improvement: The Case of a Bakery Machine Manufacturer. Sustainability 2020, 12, 6266. https://doi.org/10.3390/su12156266.

Authors

Milan Terek
milan.terek1@gmail.com (Primary Contact)
Author Biography

Milan Terek, School of Management

Milan Terek, PhD. works from 2018 as a full professor at the School of Management in Bratislava (course leader on Introduction to Statistics, Statistics, Mathematics for Managers II, Quantitative Methods for Managers, Quantitative Methods in Business Management Research). Prior to this, he worked at the University of Economics in Bratislava (course leader on Statistics, Statistical Quality Control, Decision Analysis, Data Mining, Survey Sampling, Linear Programming, Nonlinear Programming, Operations Research, and System Modelling). His research activities are focused on the applications of statistical methods in economics and management. 

 

School of Management in Bratislava, Panónska cesta 17
851 04 Bratislava, Slovakia

 

e-mail: milan.terek1@gmail.com; mterek@vsm.sk

Terek, M. (2025). Confidence Intervals for the Mean in Selecting an Appropriate Time-Dependent Distribution Model for Processes with Non-Normal Instantaneous Distributions. Quality Innovation Prosperity, 29(2), 57–70. https://doi.org/10.12776/qip.v29i2.2183

Article Details

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.