Deconstruction of Operational Variability in Biomass Production: An Application of Lean Six Sigma and System Dynamics

Angel Guamán Lozano (1), Juan Fernando Haro Velasteguí (2), Esteban Paúl Jordán Rodríguez (3), Julio César Moyano Alulema (4), Eduardo Francisco García Cabezas (5), Juan Carlos Cayán Martínez (6)
(1) Escuela Superior Politécnica de Chimborazo, Faculty of Mechanics, Riobamba, Ecuador,
(2) INDUCUERDAS Factory, Riobamba, Chimborazo, Ecuador,
(3) HIDROULBA Company, Ecuador,
(4) Escuela Superior Politécnica de Chimborazo, Faculty of Mechanics, Riobamba, Ecuador,
(5) Escuela Superior Politécnica de Chimborazo, Faculty of Mechanics, Riobamba, Ecuador,
(6) Escuela Superior Politécnica de Chimborazo, Faculty of Mechanics, Riobamba, Ecuador

Abstract

Purpose: This study seeks to optimise key production parameters for biomass pellets by employing Lean Six Sigma (LSS) alongside dynamic system simulation. Emphasis is placed on fine-tuning moisture content, durability, and pellet diameter to meet international quality standards and performance operational.


Methodology/Approach: The research integrates DMAIC methodology with dynamic simulation modelling, analysing and optimising drum speed, material feed rate, and drying temperature via factorial design and system dynamics.


Findings: Implementing LSS markedly reduced moisture variability, hitting a stable mean of 9.446% and cutting defects down to 59,000 PPM. Durability saw a notable lift from 91.976% to 95.896%, with defects slashed by 80%. Pellet diameter was fine-tuned from 7.241 to 7.051 mm, bringing defects down to 45,000 PPM. The results meet international standards and show improvements in process performance.


Research Limitation/Implication: The study is limited to one biomass site, focusing on key quality parameters. Future research could assess scalability and suitability across other renewable energy sectors.


Originality/Value of paper: This research highlights the novel integration of Lean Six Sigma and dynamic simulation in biomass pellet production, providing a robust framework for quality and operational stability in energy.

Full text article

Generated from XML file

References

Ahmed, S., Jahan, F., Naeem Effendi, M.U. and Ghani, F., 2021. Impact of COVID-19 on the pre and post analytical clinical laboratory testing processes- A performance evaluation study using six sigma. Annals of Medicine and Surgery, 70. https://doi.org/10.1016/j.amsu.2021.102842.

Altuğ, M., 2023. Application of six sigma through deep learning in the production of fasteners. International Journal of Lean Six Sigma, 14(7), pp.1376–1402. https://doi.org/10.1108/IJLSS-08-2022-0191.

Al-Zuheri, A., Vlachos, I. and Amer, Y., 2021. APPLICATION OF LEAN SIX SIGMA TO REDUCE PATIENT WAITING TIME: LITERATURE REVIEW. International Journal for Quality Research, 15(1), pp.241–258. https://doi.org/10.24874/IJQR15.01-14.

Antosz, K., Jasiulewicz-Kaczmarek, M., Waszkowski, R. and Machado, J., 2022. Application of Lean Six Sigma for sustainable maintenance: case study. In: IFAC-PapersOnLine. Elsevier B.V. pp.181–186. https://doi.org/10.1016/j.ifacol.2022.09.204.

Bloj, M.D., Moica, S. and Veres, C., 2020. Lean six sigma in the energy service sector: A case study. In: Procedia Manufacturing. Elsevier B.V. pp.352–358. https://doi.org/10.1016/j.promfg.2020.03.051.

Byrne, B., McDermott, O. and Noonan, J., 2021. Applying lean six sigma methodology to a pharmaceutical manufacturing facility: A case study. Processes, 9(3). https://doi.org/10.3390/pr9030550.

Çelik, S., Taner, M.T., Kağan, G., Şimşek, M., Kağan, M.K. and Öztek, İ., 2016. A Retrospective Study of Six Sigma Methodology to Reduce Inoperability among Lung Cancer Patients. Procedia - Social and Behavioral Sciences, 229, pp.22–32. https://doi.org/10.1016/j.sbspro.2016.07.110.

Daniyan, I., Adeodu, A., Mpofu, K., Maladzhi, R. and Kana-Kana Katumba, M.G., 2022. Application of lean Six Sigma methodology using DMAIC approach for the improvement of bogie assembly process in the railcar industry. Heliyon, 8(3). https://doi.org/10.1016/j.heliyon.2022.e09043.

Deeb, S., Haouzi, H.B. El, Aubry, A. and Dassisti, M., 2018. A generic framework to support the implementation of six sigma approach in SMEs. Elsevier B.V. pp.921–926. https://doi.org/10.1016/j.ifacol.2018.08.490.

Gholami, H., Norhazrina, J., Muhamad Zameri, M.S. and Dalia, S., 2021. The Application of Green Lean Six Sigma. Business Strategy and the Environment, 30(4), pp.1913–1931.

Indrawati, S. and Ridwansyah, M., 2015. Manufacturing Continuous Improvement Using Lean Six Sigma: An Iron Ores Industry Case Application. Procedia Manufacturing, 4, pp.528–534. https://doi.org/10.1016/j.promfg.2015.11.072.

Jitsamruay, S., Chinram, R., Poolyarat, K. and Panityakul, T., 2023. An Application of Six Sigma for Optimality of Medium Density Fiberboard Production. International Journal of Analysis and Applications, 21. https://doi.org/10.28924/2291-8639-21-2023-22.

Krueger, D.C., Mellat Parast, M. and Adams, S., 2014. Six Sigma implementation: A qualitative case study using grounded theory. Production Planning and Control, 25(10), pp.873–889. https://doi.org/10.1080/09537287.2013.771414.

Liu, E.W., 2006. Clinical Research the Six Sigma Way. Journal of Laboratory Automation, 11(1), pp.42–49. https://doi.org/10.1016/j.jala.2005.10.003.

Nithyanandam, G.K. and Pezhinkattil, R., 2014. A Six Sigma approach for precision machining in milling. In: Procedia Engineering. Elsevier Ltd. pp.1474–1488. https://doi.org/10.1016/j.proeng.2014.12.431.

Ren, A., Wang, X.Y., Cheng, P.L., Brinc, D., Berman, M.I. and Kulasingam, V., 2023. Analytical evaluation and Sigma metrics of 6 next generation chemistry assays on the Abbott Architect system. Clinica Chimica Acta, 542. https://doi.org/10.1016/j.cca.2023.117276.

Sithole, C., Gibson, I. and Hoekstra, S., 2021. Evaluation of the applicability of design for six sigma to metal additive manufacturing technology. In: Procedia CIRP. Elsevier B.V. pp.798–803. https://doi.org/10.1016/j.procir.2021.05.041.

Skalli, D., Charkaoui, A. and Cherrafi, A., 2022. Assessing interactions between Lean Six-Sigma, Circular Economy and industry 4.0: toward an integrated perspective. In: IFAC-PapersOnLine. Elsevier B.V. pp.3112–3117. https://doi.org/10.1016/j.ifacol.2022.10.207.

Tenera, A. and Pinto, L.C., 2014. A Lean Six Sigma (LSS) Project Management Improvement Model. Procedia - Social and Behavioral Sciences, 119, pp.912–920. https://doi.org/10.1016/j.sbspro.2014.03.102.

Authors

Angel Guamán Lozano
a_guaman@espoch.edu.ec (Primary Contact)
Juan Fernando Haro Velasteguí
Esteban Paúl Jordán Rodríguez
Julio César Moyano Alulema
Eduardo Francisco García Cabezas
Juan Carlos Cayán Martínez
Guamán Lozano, A., Velasteguí, J. F. H., Rodríguez, E. P. J., Alulema, J. C. M., Cabezas, E. F. G., & Martínez, J. C. C. (2025). Deconstruction of Operational Variability in Biomass Production: An Application of Lean Six Sigma and System Dynamics. Quality Innovation Prosperity, 29(1), 59–80. https://doi.org/10.12776/qip.v29i1.2138

Article Details

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.

Lean and Six Sigma Philosophies and Organizational Performance: A Study in Portuguese Laboratories

Andreia Craveiro, Vanda Lima, Gilberto Santos, José Carlos Sá, Miguel Lopes, José Dinis Carvalho
Abstract View : 1980
Download :945

Quality 4.0 for Processes and Customers

Anastasia Efimova, doc. Ing. Petr Briš, CSc.
Abstract View : 2178
Download :1117

New Paradigm of Lean Six Sigma in the 4th Industrial Revolution Era

Sung Hyun Park, Su Mi Dahlgaard-Park, Dong-Chun Kim
Abstract View : 4144
Download :2124