Optimisation of Multiple Response Processes Using Different Modeling Techniques
Abstract
Purpose:Â This article aims to compare the impact on process optimisation with multiple responses of two different mathematical modelling methods: Ordinary Least Squares Method (OLS) and Symbolic Regression Method (SR).
Methodology/Approach:Â Data from the literature were selected from the design of experiments for a process with multiple responses. Using these data, models were obtained that represented each response as a function of independent variables using the OLS and SR techniques. Then, the Desirability method was applied together with the Generalized Reduced Gradient (GRG) in order to obtain the process adjustment that would lead to the optimisation of the responses.
Findings:Â The findings illustrate that the SR modelling technique yields models with superior predictive capabilities when contrasted with the OLS technique. Throughout the optimisation process, it becomes evident that the adjustments in the process diverge, even though the desirability function's value exhibits negligible variation.
Research Limitation/implication: This research considered only an SR algorithm and a process with two dependent variables and two independent variables.
Originality/Value of paper: No works were found in the literature that reported the use of the Age-Layered Population Structure (ALPS) algorithm in modelling processes that contain multiple responses. Furthermore, no comparison of this method with the OLS method was available.
Category: Research paper.
Full text article
References
Akpa, O. M. & Unuabonah, E. I. (2011), âSmall-sample corrected akaike information criterion: An appropriate statistical tool for ranking of adsorption isotherm modelsâ, Desalination, 272(1-3), pp. 20â26. doi: 10.1016/j.desal.2010.12.057
Ascencio, J. J., Philippini, R. R., Gomes, F. M., Pereira, F. M., da Silva, S. S., Kumar, V. & Chandel, A. K. (2021), âComparative highly efficient production of ÎČ-glucan by lasiodiplodia theobromae CCT 3966 and its multiscale characterizationâ, Fermentation, 7(3), pp. 108. doi: 10.3390/fermentation7030108
Bertrand, J. W. M. & Fransoo, J. C. (2002), âOperations management research methodologies using quantitative modelingâ, International Journal of Operations & Production Management, 22(2), pp. 241â264. doi: 10.1108/01443570210414338
Bezerra, M. A., Ferreira, S. L. C., Novaes, C. G., dos Santos, A. M. P., Valasques, G. S., da Mata Cerqueira, U. M. F. & dos Santos Alves, J. P. (2019), âSimultaneous optimization of multiple responses and its application in analytical chemistry â a reviewâ, Talanta, 194, pp. 941â959. doi: 10.1016/j.talanta.2018.10.088
Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. (2010), âAIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisonsâ, Behavioral Ecology and Sociobiology, 65(1), pp. 23â35. doi: 10.1007/s00265-010-1029-6
Dehuri, S. & Cho, S.-B. (2009), âMulti-criterion pareto based particle swarm optimized polynomial neural network for classification: A review and state-of-the-artâ, Computer Science Review, 3(1), pp. 19â40. doi: 10.1016/j.cosrev.2008.11.002
Derringer, G. & Suich, R. (1980), âSimultaneous optimization of several response variablesâ, Journal of Quality Technology, 12(4), pp. 214â219. doi: 10.1080/00224065.1980.11980968
Frank, A. G., Dalenogare, L. S. & Ayala, N. F. (2019), âIndustry 4.0 technologies: Implementation patterns in manufacturing companiesâ, International Journal of Production Economics, 210, pp. 15â26. doi: 10.1016/j.ijpe.2019.01.004
Fukuda, I. M., Pinto, C. F. F., dos Santos Moreira, C., Saviano, A. M. & Lourenço, F. R. (2018), âDesign of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD)â, Brazilian Journal of Pharmaceutical Sciences, 54(spe). doi: 10.1590/s2175-97902018000001006
Gleeson, J. P., Murphy, T. B., OâBrien, J. D., Friel, N., Bargary, N. & O'Sullivan, D. J. P. (2021), âCalibrating COVID-19 susceptible-exposed-infected-removed models with timevarying effective contact ratesâ, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2214). doi: 10.1098/rsta.2021.0120
Gomes, F. M., Pereira, F. M., Marins, F. A. S. & Silva, M. B. (2017), âComparative study between the generalized reduced gradient and genetic algorithm in multiple response optimizationâ, Revista Produção Online, 17(2), pp. 592â619. doi: 10.14488/1676-1901.v17i2.2566
Gomes, F. M., Pereira, F. M., Marins, F. A. S. & Silva, M. B. (2019-a), âComparative study between different methods of agglutination in multiple response optimizationâ, Revista GestĂŁo da Produção OperaçÔes e Sistemas, 14(1), pp. 95â113. doi: 10.15675/gepros.v14i1.2080
Gomes, F. M., Pereira, F. M., Silva, A. F. & Silva, M. B. (2019), âMultiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functionsâ, Knowledge-Based Systems, 179, pp. 21â33. doi: 10.1016/j.knosys.2019.05.002
Gopalan, S. P., Kawamura, A., Takasaki, T., Amaguchi, H. & Azhikodan, G. (2018), âAn effective storage function model for an urban watershed in terms of hydrograph reproducibility and akaike information criterionâ, Journal of Hydrology, 563, pp. 657â668. doi: 10.1016/j.jhydrol.2018.06.035
Halsey, L. G. (2019), âThe reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum?â, Biology Letters, 15(5), pp. 20190174. doi: 10.1098/rsbl.2019.0174
Han, Y., Ma, Y., Ouyang, L., Wang, J. & Tu, Y. (2019), âIntegrated multiresponse parameter and tolerance design with model parameter uncertaintyâ, Quality and Reliability Engineering International, 36(1), pp. 414â433. doi: 10.1002/qre.2589
Hornby, G. S. (2006), ALPS the age-layered population structure for reducing the problem of premature convergence, in âProceedings of the 8th annual conference on Genetic and evolutionary computationâ, ACM. doi: 10.1145/1143997.1144142
Hornby, G. S. (2009), A steady-state version of the age-layered population structure EA, in âGenetic Programming Theory and Practice VIIâ, Springer US, pp. 87â102. doi: 10.1007/978-1-4419-1626-6_6
Ingdal, M., Johnsen, R. & Harrington, D. A. (2019), âThe akaike information criterion in weighted regression of immittance dataâ, Electrochimica Acta, 317, pp. 648â653. doi: 10.1016/j.electacta.2019.06.030
Keeler, B. L., Polasky, S., Brauman, K. A., Johnson, K. A., Finlay, J. C., OâNeill, A., Kovacs, K. & Dalzell, B. (2012), âLinking water quality and well-being for improved assessment and valuation of ecosystem servicesâ, Proceedings of the National Academy of Sciences, 109(45), pp. 18619â18624. doi: 10.1073/pnas.1215991109
Kommenda, M., Burlacu, B., Kronberger, G. & Affenzeller, M. (2019), âParameter identification for symbolic regression using nonlinear least squaresâ, Genetic Programming and Evolvable Machines, 21(3), pp. 471â501. doi: 10.1007/s10710-019-09371-3
Koza, J. R. (1992), Genetic Programming On the Programming of Computers by Means of Natural Selection, MIT Press.
Kuriger, G. W. & Grant, F. H. (2011), âA lexicographic nelderâmead simulation optimization method to solve multi-criteria problemsâ, Computers & Industrial Engineering, 60(4), pp. 555â565. doi: 10.1016/j.cie.2010.12.013
Liu, H., Lin, H., Jiang, X., Mao, X., Liu, Q. & Li, B. (2019), âEstimation of mass matrix in machine toolâs weak components research by using symbolic regressionâ, Computers & Industrial Engineering, 127, pp. 998â1011. doi: 10.1016/j.cie.2018.11.033
Montgomery, D. C. (2017), Design and Analysis of Experiments, Wiley & Sons, Incorporated.
Niu, B., Wu, D. & Mu, Z. (2020), âProduct diversification decisions considering quality reliability and self-competition in a global supply chainâ, INFOR: Information Systems and Operational Research, 58(4), pp. 680â702. doi: 10.1080/03155986.2020.1746556
Ojha, V. K., Abraham, A. & SnĂĄĆĄel, V. (2017), âMetaheuristic design of feedforward neural networks: A review of two decades of researchâ, Engineering Applications of Artificial Intelligence, 60, pp. 97â116. doi: 10.1016/j.engappai.2017.01.013
Patnaik, A. K., Agarwal, L. A., Panda, M. & Bhuyan, P. K. (2018), âEntry capacity modelling of signalized roundabouts under heterogeneous traffic conditionsâ, Transportation Letters, 12(2), pp. 100â112. doi: 10.1080/19427867.2018.1533160
Mohammadzadeh S, D., Bolouri Bazaz, J., Vafaee Jani Yazd, S. H., & Alavi, A. H. (2016), âDeriving an intelligent model for soil compression index utilizing multi-gene genetic programmingâ, Environmental Earth Sciences, 75(3), pp. 1-11. doi: 10.1007/s12665-015-4889-2.
Sandoval, C., Cuate, O., GonzĂĄlez, L. C., Trujillo, L. & SchĂŒtze, O. (2022), âTowards fast approximations for the hypervolume indicator for multi-objective optimization problems by genetic programmingâ, Applied Soft Computing, 125, pp. 109103. doi: https://doi.org/10.1016/j.asoc.2022.109103
Searson, D. P. (2015), GPTIPS 2: An open-source software platform for symbolic data mining, in âHandbook of Genetic Programming Applicationsâ, Springer International Publishing, pp. 551â573.
Shin, S. & Cho, B. R. (2005), âBias-specified robust design optimization and its analytical solutionsâ, Computers & Industrial Engineering, 48(1), pp. 129â140. doi: 10.1016/j.cie.2004.07.011
Soori, M., Arezoo, B. & Dastres, R. (2023), âInternet of things for smart factories in industry 4.0, a reviewâ, Internet of Things and Cyber-Physical Systems, 3, pp. 192â204. doi: 10.1016/j.iotcps.2023.04.006
Tesfamichael, S. G. & Ndlovu, A. (2018), âUtility of ASTER and landsat for quantifying hydrochemical concentrations in abandoned gold miningâ, Science of The Total Environment, 618, pp. 1560â1571. doi: 10.1016/j.scitotenv.2017.09.335
Toledo, C. F. M., da Silva Arantes, M., Hossomi, M. Y. B. & Almada-Lobo, B. (2016), âMathematical programming-based approaches for multi-facility glass container production planningâ, Computers & Operations Research, 74, pp. 92â107. doi: 10.1016/j.cor.2016.02.019
Ward, E. J. (2008), âA review and comparison of four commonly used bayesian and maximum likelihood model selection toolsâ, Ecological Modelling, 211(1-2), pp. 1â10. doi: 10.1016/j.ecolmodel.2007.10.030
Yang, I.-T. (2005), âSimulation-based estimation for correlated cost elementsâ, International Journal of Project Management, 23(4), pp. 275â282. doi: 10.1016/j.ijproman.2004.12.002
Zhu, H., You, X. & Liu, S. (2019), âMultiple ant colony optimization based on pearson correlation coefficientâ, IEEE Access, 7, pp. 61628â61638. doi: 10.1109/ACCESS.2019.2915673
Authors
Copyright (c) 2023 FabrĂcio Maciel Gomes, CĂ©lia Sayuri Imamura, Nilo Antonio de Souza Sampaio, FĂ©lix Monteiro Pereira, Herlandi de Souza Andrade, Messias Borges Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. This journal is licensed under a Creative Commons Attribution 4.0 License - http://creativecommons.org/licenses/by/4.0.
Authors who publish with the Quality Innovation Prosperity agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.