Optimisation of Multiple Response Processes Using Different Modeling Techniques

Fabrício Maciel Gomes (1), Célia Sayuri Imamura (2), Nilo Antonio de Souza Sampaio (3), Félix Monteiro Pereira (4), Herlandi de Souza Andrade (5), Messias Borges Silva (6)
(1) Universidade de São Paulo, Brazil,
(2) Universidade de São Paulo, Brazil,
(3) , Brazil,
(4) , Brazil,
(5) , Brazil,
(6) , Brazil

Abstract

Purpose:  This article aims to compare the impact on process optimisation with multiple responses of two different mathematical modelling methods: Ordinary Least Squares Method (OLS) and Symbolic Regression Method (SR).


Methodology/Approach:  Data from the literature were selected from the design of experiments for a process with multiple responses. Using these data, models were obtained that represented each response as a function of independent variables using the OLS and SR techniques. Then, the Desirability method was applied together with the Generalized Reduced Gradient (GRG) in order to obtain the process adjustment that would lead to the optimisation of the responses.


Findings:  The findings illustrate that the SR modelling technique yields models with superior predictive capabilities when contrasted with the OLS technique. Throughout the optimisation process, it becomes evident that the adjustments in the process diverge, even though the desirability function's value exhibits negligible variation.


Research Limitation/implication: This research considered only an SR algorithm and a process with two dependent variables and two independent variables.


Originality/Value of paper: No works were found in the literature that reported the use of the Age-Layered Population Structure (ALPS) algorithm in modelling processes that contain multiple responses. Furthermore, no comparison of this method with the OLS method was available.


Category: Research paper.

Full text article

Generated from XML file

References

Akpa, O. M. & Unuabonah, E. I. (2011), ‘Small-sample corrected akaike information criterion: An appropriate statistical tool for ranking of adsorption isotherm models’, Desalination, 272(1-3), pp. 20–26. doi: 10.1016/j.desal.2010.12.057

Ascencio, J. J., Philippini, R. R., Gomes, F. M., Pereira, F. M., da Silva, S. S., Kumar, V. & Chandel, A. K. (2021), ‘Comparative highly efficient production of β-glucan by lasiodiplodia theobromae CCT 3966 and its multiscale characterization’, Fermentation, 7(3), pp. 108. doi: 10.3390/fermentation7030108

Bertrand, J. W. M. & Fransoo, J. C. (2002), ‘Operations management research methodologies using quantitative modeling’, International Journal of Operations & Production Management, 22(2), pp. 241–264. doi: 10.1108/01443570210414338

Bezerra, M. A., Ferreira, S. L. C., Novaes, C. G., dos Santos, A. M. P., Valasques, G. S., da Mata Cerqueira, U. M. F. & dos Santos Alves, J. P. (2019), ‘Simultaneous optimization of multiple responses and its application in analytical chemistry – a review’, Talanta, 194, pp. 941–959. doi: 10.1016/j.talanta.2018.10.088

Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. (2010), ‘AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons’, Behavioral Ecology and Sociobiology, 65(1), pp. 23–35. doi: 10.1007/s00265-010-1029-6

Dehuri, S. & Cho, S.-B. (2009), ‘Multi-criterion pareto based particle swarm optimized polynomial neural network for classification: A review and state-of-the-art’, Computer Science Review, 3(1), pp. 19–40. doi: 10.1016/j.cosrev.2008.11.002

Derringer, G. & Suich, R. (1980), ‘Simultaneous optimization of several response variables’, Journal of Quality Technology, 12(4), pp. 214–219. doi: 10.1080/00224065.1980.11980968

Frank, A. G., Dalenogare, L. S. & Ayala, N. F. (2019), ‘Industry 4.0 technologies: Implementation patterns in manufacturing companies’, International Journal of Production Economics, 210, pp. 15–26. doi: 10.1016/j.ijpe.2019.01.004

Fukuda, I. M., Pinto, C. F. F., dos Santos Moreira, C., Saviano, A. M. & Lourenço, F. R. (2018), ‘Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD)’, Brazilian Journal of Pharmaceutical Sciences, 54(spe). doi: 10.1590/s2175-97902018000001006

Gleeson, J. P., Murphy, T. B., O’Brien, J. D., Friel, N., Bargary, N. & O'Sullivan, D. J. P. (2021), ‘Calibrating COVID-19 susceptible-exposed-infected-removed models with timevarying effective contact rates’, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2214). doi: 10.1098/rsta.2021.0120

Gomes, F. M., Pereira, F. M., Marins, F. A. S. & Silva, M. B. (2017), ‘Comparative study between the generalized reduced gradient and genetic algorithm in multiple response optimization’, Revista Produção Online, 17(2), pp. 592–619. doi: 10.14488/1676-1901.v17i2.2566

Gomes, F. M., Pereira, F. M., Marins, F. A. S. & Silva, M. B. (2019-a), ‘Comparative study between different methods of agglutination in multiple response optimization’, Revista Gestão da Produção Operações e Sistemas, 14(1), pp. 95–113. doi: 10.15675/gepros.v14i1.2080

Gomes, F. M., Pereira, F. M., Silva, A. F. & Silva, M. B. (2019), ‘Multiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functions’, Knowledge-Based Systems, 179, pp. 21–33. doi: 10.1016/j.knosys.2019.05.002

Gopalan, S. P., Kawamura, A., Takasaki, T., Amaguchi, H. & Azhikodan, G. (2018), ‘An effective storage function model for an urban watershed in terms of hydrograph reproducibility and akaike information criterion’, Journal of Hydrology, 563, pp. 657–668. doi: 10.1016/j.jhydrol.2018.06.035

Halsey, L. G. (2019), ‘The reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum?’, Biology Letters, 15(5), pp. 20190174. doi: 10.1098/rsbl.2019.0174

Han, Y., Ma, Y., Ouyang, L., Wang, J. & Tu, Y. (2019), ‘Integrated multiresponse parameter and tolerance design with model parameter uncertainty’, Quality and Reliability Engineering International, 36(1), pp. 414–433. doi: 10.1002/qre.2589

Hornby, G. S. (2006), ALPS the age-layered population structure for reducing the problem of premature convergence, in ‘Proceedings of the 8th annual conference on Genetic and evolutionary computation’, ACM. doi: 10.1145/1143997.1144142

Hornby, G. S. (2009), A steady-state version of the age-layered population structure EA, in ‘Genetic Programming Theory and Practice VII’, Springer US, pp. 87–102. doi: 10.1007/978-1-4419-1626-6_6

Ingdal, M., Johnsen, R. & Harrington, D. A. (2019), ‘The akaike information criterion in weighted regression of immittance data’, Electrochimica Acta, 317, pp. 648–653. doi: 10.1016/j.electacta.2019.06.030

Keeler, B. L., Polasky, S., Brauman, K. A., Johnson, K. A., Finlay, J. C., O’Neill, A., Kovacs, K. & Dalzell, B. (2012), ‘Linking water quality and well-being for improved assessment and valuation of ecosystem services’, Proceedings of the National Academy of Sciences, 109(45), pp. 18619–18624. doi: 10.1073/pnas.1215991109

Kommenda, M., Burlacu, B., Kronberger, G. & Affenzeller, M. (2019), ‘Parameter identification for symbolic regression using nonlinear least squares’, Genetic Programming and Evolvable Machines, 21(3), pp. 471–501. doi: 10.1007/s10710-019-09371-3

Koza, J. R. (1992), Genetic Programming On the Programming of Computers by Means of Natural Selection, MIT Press.

Kuriger, G. W. & Grant, F. H. (2011), ‘A lexicographic nelder–mead simulation optimization method to solve multi-criteria problems’, Computers & Industrial Engineering, 60(4), pp. 555–565. doi: 10.1016/j.cie.2010.12.013

Liu, H., Lin, H., Jiang, X., Mao, X., Liu, Q. & Li, B. (2019), ‘Estimation of mass matrix in machine tool’s weak components research by using symbolic regression’, Computers & Industrial Engineering, 127, pp. 998–1011. doi: 10.1016/j.cie.2018.11.033

Montgomery, D. C. (2017), Design and Analysis of Experiments, Wiley & Sons, Incorporated.

Niu, B., Wu, D. & Mu, Z. (2020), ‘Product diversification decisions considering quality reliability and self-competition in a global supply chain’, INFOR: Information Systems and Operational Research, 58(4), pp. 680–702. doi: 10.1080/03155986.2020.1746556

Ojha, V. K., Abraham, A. & Snášel, V. (2017), ‘Metaheuristic design of feedforward neural networks: A review of two decades of research’, Engineering Applications of Artificial Intelligence, 60, pp. 97–116. doi: 10.1016/j.engappai.2017.01.013

Patnaik, A. K., Agarwal, L. A., Panda, M. & Bhuyan, P. K. (2018), ‘Entry capacity modelling of signalized roundabouts under heterogeneous traffic conditions’, Transportation Letters, 12(2), pp. 100–112. doi: 10.1080/19427867.2018.1533160

Mohammadzadeh S, D., Bolouri Bazaz, J., Vafaee Jani Yazd, S. H., & Alavi, A. H. (2016), ‘Deriving an intelligent model for soil compression index utilizing multi-gene genetic programming’, Environmental Earth Sciences, 75(3), pp. 1-11. doi: 10.1007/s12665-015-4889-2.

Sandoval, C., Cuate, O., González, L. C., Trujillo, L. & Schütze, O. (2022), ‘Towards fast approximations for the hypervolume indicator for multi-objective optimization problems by genetic programming’, Applied Soft Computing, 125, pp. 109103. doi: https://doi.org/10.1016/j.asoc.2022.109103

Searson, D. P. (2015), GPTIPS 2: An open-source software platform for symbolic data mining, in ‘Handbook of Genetic Programming Applications’, Springer International Publishing, pp. 551–573.

Shin, S. & Cho, B. R. (2005), ‘Bias-specified robust design optimization and its analytical solutions’, Computers & Industrial Engineering, 48(1), pp. 129–140. doi: 10.1016/j.cie.2004.07.011

Soori, M., Arezoo, B. & Dastres, R. (2023), ‘Internet of things for smart factories in industry 4.0, a review’, Internet of Things and Cyber-Physical Systems, 3, pp. 192–204. doi: 10.1016/j.iotcps.2023.04.006

Tesfamichael, S. G. & Ndlovu, A. (2018), ‘Utility of ASTER and landsat for quantifying hydrochemical concentrations in abandoned gold mining’, Science of The Total Environment, 618, pp. 1560–1571. doi: 10.1016/j.scitotenv.2017.09.335

Toledo, C. F. M., da Silva Arantes, M., Hossomi, M. Y. B. & Almada-Lobo, B. (2016), ‘Mathematical programming-based approaches for multi-facility glass container production planning’, Computers & Operations Research, 74, pp. 92–107. doi: 10.1016/j.cor.2016.02.019

Ward, E. J. (2008), ‘A review and comparison of four commonly used bayesian and maximum likelihood model selection tools’, Ecological Modelling, 211(1-2), pp. 1–10. doi: 10.1016/j.ecolmodel.2007.10.030

Yang, I.-T. (2005), ‘Simulation-based estimation for correlated cost elements’, International Journal of Project Management, 23(4), pp. 275–282. doi: 10.1016/j.ijproman.2004.12.002

Zhu, H., You, X. & Liu, S. (2019), ‘Multiple ant colony optimization based on pearson correlation coefficient’, IEEE Access, 7, pp. 61628–61638. doi: 10.1109/ACCESS.2019.2915673

Authors

Fabrício Maciel Gomes
Célia Sayuri Imamura
Nilo Antonio de Souza Sampaio
Félix Monteiro Pereira
Herlandi de Souza Andrade
Messias Borges Silva
Author Biographies

Fabrício Maciel Gomes, Universidade de São Paulo

Ph.D, Professor and Researcher,

Department of Chemical Engineering and Industrial Engineering

Engineering School of Lorena (EEL)

University of São Paulo (USP), Brazil

Célia Sayuri Imamura, Universidade de São Paulo

Researcher and student,

Department of Chemical Engineering and Industrial Engineering

Engineering School of Lorena (EEL)

University of São Paulo (USP), Brazil

 

Nilo Antonio de Souza Sampaio

Ph.D, Prof. and Researcher,

Universidade do Estado do Rio de Janeiro (UERJ), Brazil,

Félix Monteiro Pereira

Ph.D, Professor and Researcher,

Department of Chemical Engineering and Industrial Engineering

Engineering School of Lorena (EEL)

University of São Paulo (USP), Brazil

Herlandi de Souza Andrade

Ph.D, Professor and Researcher,

Department of Chemical Engineering and Industrial Engineering

Engineering School of Lorena (EEL)

University of São Paulo (USP), Brazil

Messias Borges Silva

Ph.D, Professor and Researcher,

Department of Chemical Engineering and Industrial Engineering

Engineering School of Lorena (EEL)

University of São Paulo (USP), Brazil

Maciel Gomes, F., Imamura, C. S., de Souza Sampaio, N. A., Monteiro Pereira, F., de Souza Andrade, H., & Borges Silva, M. (2023). Optimisation of Multiple Response Processes Using Different Modeling Techniques. Quality Innovation Prosperity, 27(3), 18–36. https://doi.org/10.12776/qip.v27i3.1899

Article Details

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.

No Related Submission Found